Crossing boundaries of light microscopy resolution discerns novel assemblies in the nucleolus.

Histochem Cell Biol

Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.

Published: July 2024

The nucleolus is the largest membraneless organelle and nuclear body in mammalian cells. It is primarily involved in the biogenesis of ribosomes, essential macromolecular machines responsible for synthesizing all proteins required by the cell. The assembly of ribosomes is evolutionarily conserved and accounts for the most energy-consuming cellular process needed for cell growth, proliferation, and homeostasis. Despite the significance of this process, the substructural mechanistic principles of the nucleolar function in preribosome biogenesis have only recently begun to emerge. Here, we provide a new perspective using advanced super-resolution microscopy and single-molecule MINFLUX nanoscopy on the mechanistic principles governing ribosomal RNA-seeded nucleolar formation and the resulting tripartite suborganization of the nucleolus driven, in part, by liquid-liquid phase separation. With recent advances in the cryogenic electron microscopy (cryoEM) structural analysis of ribosome biogenesis intermediates, we highlight the current understanding of the step-wise assembly of preribosomal subunits in the nucleolus. Finally, we address how novel anticancer drug candidates target early steps in ribosome biogenesis to exploit these essential dependencies for growth arrest and tumor control.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11330670PMC
http://dx.doi.org/10.1007/s00418-024-02297-7DOI Listing

Publication Analysis

Top Keywords

mechanistic principles
8
ribosome biogenesis
8
crossing boundaries
4
boundaries light
4
light microscopy
4
microscopy resolution
4
resolution discerns
4
discerns novel
4
novel assemblies in
4
nucleolus
4

Similar Publications

This review article highlights the importance of novel charge transfer (CT) sensing approach for the detection of ions which are crucial from environmental and biological point of view. The importance, principles of charge transfer, ion sensing, its different types, and its basic process will all be covered here. The strategy has been reported with enormous sensitivity and fast signaling response owing to the fact that strong electronic connection communication exists between donor (D) and acceptor (A) part.

View Article and Find Full Text PDF

Bayesian Gene Set Benchmark Dose Estimation for "omic" responses.

Bioinformatics

January 2025

Division of Intramural Research, Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, North Carolina 27709, United States.

Motivation: Estimating a toxic reference point using tools like the benchmark dose (BMD) is a critical step in setting policy to regulate pollution and ensure safe environments. Toxicity can be measured for different endpoints, including changes in gene expression and histopathology for various tissues, and is typically explored one gene or tissue at a time in a univariate setting that ignores correlation. In this work, we develop a multivariate estimation procedure to estimate the BMD for specified gene sets.

View Article and Find Full Text PDF

The cellular interior is a spatially complex environment shaped by non-trivial stochastic and biophysical processes. Within this complexity, spatial organizational principles-also called spatial phenotypes-often emerge with functional implications. However, identifying and quantifying these phenotypes in the stochastic intracellular environment is challenging.

View Article and Find Full Text PDF

Objective: Elevated attention-deficit/hyperactivity disorder (ADHD) symptoms in preschoolers are a risk factor for poorer psychiatric health, cognitive deficits, and social and academic impairment across the lifespan. The first-line treatment for these preschoolers, behavioral parent training (BPT), reduces children's disruptive behaviors and parenting stress, yet its impact on core ADHD symptoms is inconsistent. Early interventions targeting biological mechanisms linked to core ADHD pathophysiology are critically needed.

View Article and Find Full Text PDF

Immunoconjugates as an Efficient Platform for Drug Delivery: A Resurgence of Natural Products in Targeted Antitumor Therapy.

Pharmaceuticals (Basel)

December 2024

Department "Pharmacology, Pharmacotherapy and Toxicology", Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria.

The present review provides a detailed and comprehensive discussion on antibody-drug conjugates (ADCs) as an evolving new modality in the current therapeutic landscape of malignant diseases. The principle concepts of targeted delivery of highly toxic agents forsaken as stand-alone drugs are examined in detail, along with the biochemical and technological tools for their successful implementation. An extensive analysis of ADCs' major components is conducted in parallel with their function and impact on the stability, efficacy, safety, and resistance profiles of the immunoconjugates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!