Neuroinflammation has emerged as a crucial factor in the development of depression. Despite the well-known anti-inflammatory properties of 6-gingerol, its potential impact on depression remains poorly understood. This study aimed to investigate the antidepressant effects of 6-gingerol by suppressing microglial activation. In vivo experiments were conducted to evaluate the effect of 6-gingerol on lipopolysaccharide (LPS)-induced behavioral changes and neuroinflammation in rat models. In vitro studies were performed to examine the neuroprotective properties of 6-gingerol against LPS-induced microglial activation. Furthermore, a co-culture system of microglia and neurons was established to assess the influence of 6-gingerol on the expression of synaptic-related proteins, namely synaptophysin (SYP) and postsynaptic density protein 95 (PSD95), which are influenced by microglial activation. In the in vivo experiments, administration of 6-gingerol effectively alleviated LPS-induced depressive behavior in rats. Moreover, it markedly suppressed the activation of rat prefrontal cortex (PFC) microglia induced by LPS and the activation of the NF-κB/NLRP3 inflammatory pathway, while also reducing the levels of inflammatory cytokines IL-1β and IL-18. In the in vitro experiments, 6-gingerol mitigated nuclear translocation of NF-κB p65, NLRP3 activation, and maturation of IL-1β and IL-18, all of which were induced by LPS. Furthermore, in the co-culture system of microglia and neurons, 6-gingerol effectively restored the decreased expression of SYP and PSD95. The findings of this study demonstrate the neuroprotective effects of 6-gingerol in the context of LPS-induced depression-like behavior. These effects are attributed to the inhibition of microglial hyperactivation through the suppression of the NF-κB/NLRP3 inflammatory pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11481-024-10123-z | DOI Listing |
Front Pharmacol
December 2024
Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.
Background: Huntington disease (HD), a neurodegenerative autosomal dominant disorder, is characterized by involuntary choreatic movements with cognitive and behavioral disturbances. Up to now, no therapeutic strategies are available to completely ameliorate the progression of HD. has various pharmacologic effects such as antioxidant and anti-inflammatory activities.
View Article and Find Full Text PDFFront Neurosci
December 2024
Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany.
Brain aging is a chronic process linked to inflammation, microglial activation, and oxidative damage, which can ultimately lead to neuronal loss. Sialic acid-binding immunoglobulin-like lectin-11 (SIGLEC-11) is a human lineage-specific microglial cell surface receptor that recognizes -2-8-linked oligo-/polysialylated glycomolecules with inhibitory effects on the microglial inflammatory pathways. Recently, the gene locus was prioritized as a top tier microglial gene with potential causality to Alzheimer's disease, although its role in inflammation and neurodegeneration remains poorly understood.
View Article and Find Full Text PDFDemyelination, or the loss of myelin in the central nervous system (CNS) is a hallmark of multiple sclerosis (MS) and occurs in various forms of CNS injury and neurodegenerative diseases. The regeneration of myelin, or remyelination, occurs spontaneously following demyelination. The lysophosphatidylcholine (LPC)-induced focal demyelination model enables investigations into the mechanisms of remyelination, providing insight into the molecular basis underlying an evolving remyelinating microenvironment over a tractable time course.
View Article and Find Full Text PDFBull Exp Biol Med
January 2025
Research Center of Neurology, Moscow, Russia.
The number of microglia cells and astrocytes in layer V of the cerebral cortex was estimated on day 7 after damage caused by a unilateral focal traumatic brain injury of the left hemisphere sensorimotor cortex. Quantitative assessment was performed by counting immunocytochemically stained microglia cells (Iba1 marker) and activated astrocytes (GFAP) at different distances from the lesion site. Activation of microglial and astroglial cells was observed not only in the marginal zone of the lesion of the left hemisphere, but also in the intact hemisphere.
View Article and Find Full Text PDFNat Neurosci
January 2025
Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.
Brain-resident macrophages, microglia, have been proposed to have an active role in synaptic refinement and maturation, influencing plasticity and circuit-level connectivity. Here we show that several neurodevelopmental processes previously attributed to microglia can proceed without them. Using a genetically modified mouse that lacks microglia (Csf1r), we find that intrinsic properties, synapse number and synaptic maturation are largely normal in the hippocampal CA1 region and somatosensory cortex at stages where microglia have been implicated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!