Monocyte/macrophage cells play a central role in innate immunity against C. neoformans and C. gattii, species known to cause human disease. Cryptococcus is the only fungal genus known to possess such a large extracellular polysaccharide capsule, which impacts interactions of innate cells with the yeast. This interaction results in different fates, such as phagocytosis and intracellular proliferation and, as the interaction progresses, vomocytosis, cell-to-cell transfer, lysis of macrophages, or yeast killing. Differentiating internalized versus external Cryptococcus cells is thus essential to evaluate monocyte-macrophage phagocytosis. We describe here a protocol that allows quantification of Cryptococcus spp. phagocytosis using quantitative flow cytometry in human monocytes and a murine macrophage cell line (J774).

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-3722-7_11DOI Listing

Publication Analysis

Top Keywords

human monocytes
8
murine macrophage
8
macrophage cell
8
assessing phagocytosis
4
cryptococcus
4
phagocytosis cryptococcus
4
cryptococcus neoformans
4
cells
4
neoformans cells
4
cells human
4

Similar Publications

Deep learning reveals diverging effects of altitude on aging.

Geroscience

January 2025

Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.

Aging is influenced by a complex interplay of multifarious factors, including an individual's genetics, environment, and lifestyle. Notably, high altitude may impact aging and age-related diseases through exposures such as hypoxia and ultraviolet (UV) radiation. To investigate this, we mined risk exposure data (summary exposure value), disease burden data (disability-adjusted life years (DALYs)), and death rates and life expectancy from the Global Health Data Exchange (GHDx) and National Data Management Center for Health of Ethiopia for each subnational region of Ethiopia, a country with considerable differences in the living altitude.

View Article and Find Full Text PDF

Ticam2 ablation facilitates monocyte exhaustion recovery after sepsis.

Sci Rep

January 2025

Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061-0910, USA.

Sepsis is a leading cause of death worldwide, with most patient mortality stemming from lingering immunosuppression in sepsis survivors. This is due in part to immune dysfunction resulting from monocyte exhaustion, a phenotype of reduced antigen presentation, altered CD14/CD16 inflammatory subtypes, and disrupted cytokine production. Whereas previous research demonstrated improved sepsis survival in Ticam2 mice, the contribution of TICAM2 to long-term exhaustion memory remained unknown.

View Article and Find Full Text PDF

Programmed-cell death is an antimicrobial defense mechanism that promotes clearance of intracellular pathogens. Toxoplasma counteracts host immune defenses by secreting effector proteins into host cells; however, how the parasite evades lytic cell death and the effectors involved remain poorly characterized. We identified ROP55, a rhoptry protein that promotes parasite survival by preventing lytic cell death in absence of IFN-γ stimulation.

View Article and Find Full Text PDF

Background And Objective: Asthma-COPD overlap (ACO) is characterized by patients exhibiting features of both asthma and COPD. Currently, there is no specific treatment for ACO. This study aimed to investigate the therapeutic potential of targeting CD131, a shared receptor subunit for IL-3, IL-5 and GM-CSF, in ACO development and in preventing acute viral exacerbations.

View Article and Find Full Text PDF

Psoriasis, a chronic inflammatory skin disease, poses a significant burden on patients' quality of life and healthcare systems. While mild-to-moderate cases are treated topically, usually combined with phototherapy, severe cases require systemic treatment with immunosuppressants, retinoids or biologics. However, all available treatments have drawbacks in terms of efficiency and side effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!