AI Article Synopsis

  • Maghemite nanoparticles modified with Co(II) coordination complexes show enhanced magnetic properties, including doubled blocking temperature and increased coercive field, due to changes in magnetic anisotropy.
  • Magnetometric studies indicate that this enhancement stems from molecular interactions between Co(II) and oxygen atoms at the nanoparticle surface, affecting both surface and core magnetic characteristics.
  • X-ray spectroscopy techniques confirm strong magnetic exchange interactions at room temperature, with similar effects observed in Ni(II) modified nanoparticles, highlighting the role of oxido coordination bridges in magnetic coupling.

Article Abstract

Maghemite nanoparticles functionalised with Co(II) coordination complexes at their surface show a significant increase of their magnetic anisotropy, leading to a doubling of the blocking temperature and a sixfold increase of the coercive field. Magnetometric studies suggest an enhancement that is not related to surface disordering, and point to a molecular effect involving magnetic exchange interactions mediated by the oxygen atoms at the interface as its source. Field- and temperature-dependent X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) studies show that the magnetic anisotropy enhancement is not limited to surface atoms and involves the core of the nanoparticle. These studies also point to a mechanism driven by anisotropic exchange and confirm the strength of the magnetic exchange interactions. The coupling between the complex and the nanoparticle persists at room temperature. Simulations based on the XMCD data give an effective exchange field value through the oxido coordination bridge between the Co(II) complex and the nanoparticle that is comparable to the exchange field between iron ions in bulk maghemite. Further evidence of the effectiveness of the oxido coordination bridge in mediating the magnetic interaction at the interface is given with the Ni(II) analog to the Co(II) surface-functionalised nanoparticles. A substrate-induced magnetic response is observed for the Ni(II) complexes, up to room temperature.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4nr01220hDOI Listing

Publication Analysis

Top Keywords

magnetic interaction
8
coordination complexes
8
magnetic anisotropy
8
magnetic exchange
8
exchange interactions
8
complex nanoparticle
8
room temperature
8
exchange field
8
oxido coordination
8
coordination bridge
8

Similar Publications

Patients with dementia with Lewy bodies display a signature alteration of their cognitive connectome.

Sci Rep

January 2025

Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden.

Cognition plays a central role in the diagnosis and characterization of dementia with Lewy bodies (DLB). However, the complex associations among cognitive deficits in different domains in DLB are largely unknown. To characterize these associations, we investigated and compared the cognitive connectome of DLB patients, healthy controls (HC), and Alzheimer's disease patients (AD).

View Article and Find Full Text PDF

Alternative splicing in the DBD linker region of p63 modulates binding to DNA and iASPP in vitro.

Cell Death Dis

January 2025

Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany.

The transcription factor p63 is expressed in many different isoforms as a result of differential promoter use and splicing. Some of these isoforms have very specific physiological functions in the development and maintenance of epithelial tissues and surveillance of genetic integrity in oocytes. The ASPP family of proteins is involved in modulating the transcriptional activity of the p53 protein family members, including p63.

View Article and Find Full Text PDF

NEBULA101: an open dataset for the study of language aptitude in behaviour, brain structure and function.

Sci Data

January 2025

Brain and Language Lab, Department of Psychology, Faculty of Psychology and Education Science, University of Geneva, Geneva, Switzerland.

This paper introduces the "NEBULA101 - Neuro-behavioural Understanding of Language Aptitude" dataset, which comprises behavioural and brain imaging data from 101 healthy adults to examine individual differences in language and cognition. Human language, a multifaceted behaviour, varies significantly among individuals, at different processing levels. Recent advances in cognitive science have embraced an integrated approach, combining behavioural and brain studies to explore these differences comprehensively.

View Article and Find Full Text PDF

We systematically investigate the magnetization and thermodynamic responses associated with antiferromagnetic (AFM) transitions in single crystals of the magnetic semiconductor Eu3InAs3. The linear thermal expansion measurements around the AFM transition temperatures, TN1 and TN2, indicate an expansion along the a axis and contraction along the b and c axes. The calculated ∆V/V(T) shows a continuous change at TN, indicating a second-order magnetic phase transition.

View Article and Find Full Text PDF

The spin-wave energy spectrum and transition temperature of the two-dimensional VSe2-like: A retarded Green's function method study.

J Phys Condens Matter

January 2025

Northeastern University, College of Science, Northeastern University, Shenyang 110819, China, Shenyang, Liaoning, 110819, CHINA.

Based on the recent discovery of intrinsic magnetism in monolayer films VSe2, we have constructed a two-dimensional (2D) Heisenberg model incorporating the 1T and 2H structures. These configurations consist of three layers: the upper and lower surface layers and a middle layer. Using the retarded Green's function method, we investigate the spin-wave energy spectrum, spin-wave density of states, and transition temperature of the system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!