Etching-Hydrolysis Strategy To Construct an In-Plane ZnInS/In(OH) Heterojunction with Enhanced CO Photoreduction Performance.

ACS Appl Mater Interfaces

State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China.

Published: May 2024

The in-plane heterojunctions with atomic-level thickness and chemical-bond-connected tight interfaces possess high carrier separation efficiency and fully exposed surface active sites, thus exhibiting exceptional photocatalytic performance. However, the construction of in-plane heterojunctions remains a significant challenge. Herein, we prepared an in-plane ZnInS/In(OH) heterojunction (ZISOH) by partial conversion of ZnInS to In(OH) through the addition of HO. This oxidation etching-hydrolysis approach enables the ZISOH heterojunction to not only preserve the original nanosheet morphology of ZnInS but also form an intimate interface. Moreover, generated In(OH) serves as an electron-accepting platform and also promotes the adsorption of CO. As a result, the heterojunction exhibits a remarkably enhanced performance for photocatalytic CO reduction. The production rate and selectivity of CO reach 1760 μmol g h and 78%, respectively, significantly higher than those of ZnInS (842 μmol g h and 65%). This work puts forward a feasible and facile approach to construct in-plane heterojunctions to enhance the photocatalytic performance of two-dimensional metal sulfides.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c02158DOI Listing

Publication Analysis

Top Keywords

in-plane heterojunctions
12
construct in-plane
8
in-plane znins/inoh
8
znins/inoh heterojunction
8
photocatalytic performance
8
in-plane
5
etching-hydrolysis strategy
4
strategy construct
4
heterojunction
4
heterojunction enhanced
4

Similar Publications

Heterojunctions (HJs) based on two-dimensional (2D) transition metal dichalcogenides are considered promising candidates for next-generation electronic and optoelectronic devices. Here, vertical (V-type) and lateral (L-type) HJ diodes based on metallic 1T-VSe and semiconducting 2H-WSe with out-of-plane and in-plane contacts are designed. First-principles quantum transport simulations reveal that both V- and L-type VSe/WSe HJ diodes form p-type Schottky contacts.

View Article and Find Full Text PDF

Oxide materials with a non-centrosymmetric structure exhibit bulk photovoltaic effect (BPVE) but with a low cell efficiency. Over the past few years, relatively larger BPVE coefficients have been reported for two-dimensional (2D) layers and stacks with asymmety-induced spontaneous polarization. Here, we report a crucial breakthrough in boosting the BPVE in 3R-MoS by adopting edge contact (EC) geometry using bismuth semimetal electrode.

View Article and Find Full Text PDF

Field effect transistors have shown promising performance as terahertz (THz) detectors over the past few decades. Recently, a quantum phenomenon, the in-plane photoelectric effect, was discovered as a novel detection mechanism in gated two-dimensional electron gases (2DEGs), and devices based on this effect, photoelectric tunable-step (PETS) THz detectors, have been proposed as sensitive THz detectors. Here, we demonstrate a PETS THz detector based on GaAs/AlGaAs heterojunction using a dipole antenna.

View Article and Find Full Text PDF

Heterojunction-structured NiSe/CoSe nanoparticles anchored on holey graphene for performance-enhanced sodium-ion batteries.

J Colloid Interface Sci

February 2025

Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, China. Electronic address:

Graphene-based metal selenides, are increasingly recognized for their potential in sodium-ion battery applications due to their superior electrochemical properties. The unique structure of graphene facilitates rapid in-plane transport of sodium ions, but the interlayer diffusion remains a significant challenge. The NiSe@CoSe heterojunctions, strategically grown adjacent to the graphene pores, offer a novel solution by creating in-plane holes that serve as direct channels for vertical ion transport, thereby enhancing cross-layer sodium ion permeation.

View Article and Find Full Text PDF

Two-dimensional (2D) in-plane heterostructures display exceptional optical and electrical properties well beyond those of their pristine components. However, they are usually produced by tedious and energy-intensive bottom-up growth approaches, not compatible with scalable solution-processing technologies. Here, we report a new stepwise microfluidic approach, based on defect engineering of liquid-phase exfoliated transition metal dichalcogenides (TMDs), to synthesize 2D hetero-networks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!