Ferroptosis is a distinct mode of cell death, distinguishing itself from typical apoptosis by its reliance on the accumulation of iron ions and lipid peroxides. Cells manifest an imbalance between oxidative stress and antioxidant equilibrium during certain pathological contexts, such as tumours, resulting in oxidative stress. Notably, recent investigations propose that heightened intracellular reactive oxygen species (ROS) due to oxidative stress can heighten cellular susceptibility to ferroptosis inducers or expedite the onset of ferroptosis. Consequently, comprehending role of ROS in the initiation of ferroptosis has significance in elucidating disorders related to oxidative stress. Moreover, an exhaustive exploration into the mechanism and control of ferroptosis might offer novel targets for addressing specific tumour types. Within this context, our review delves into recent fundamental pathways and the molecular foundation of ferroptosis. Four classical ferroptotic molecular pathways are well characterized, namely, glutathione peroxidase 4-centred molecular pathway, nuclear factor erythroid 2-related factor 2 molecular pathway, mitochondrial molecular pathway, and mTOR-dependent autophagy pathway. Furthermore, we seek to elucidate the regulatory contributions enacted by ROS. Additionally, we provide an overview of targeted medications targeting four molecular pathways implicated in ferroptosis and their potential clinical applications. Here, we review the role of ROS and oxidative stress in ferroptosis, and we discuss opportunities to use ferroptosis as a new strategy for cancer therapy and point out the current challenges persisting within the domain of ROS-regulated anticancer drug research and development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11100387 | PMC |
http://dx.doi.org/10.1111/jcmm.18399 | DOI Listing |
Shock
February 2025
Department of Respiratory and Critical Care Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China.
Background: Ubiquitination and deubiquitination are involved in the progression of human diseases, including acute pneumonia. In this study, we aimed to explore the functions of ubiquitin-specific peptidase 9X-linked (USP9X) in lipopolysaccharide (LPS)-treated WI-38 cells. Methods: WI-38 cells were treated with LPS to induce the cellular damage and inflammation.
View Article and Find Full Text PDFArch Physiol Biochem
December 2024
Laboratory of Biochemistry, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia.
To examine the effects of self-paced combined high-intensity interval training and resistance training (HIIT-RT) on oxidative stress, inflammation lipid profile and body composition in people with multiple sclerosis (PwMS). Twenty-three PwMS were randomly assigned to either a control group (CG, n = 12) or a training group (TG, n = 11). The TG performed a 12-week self-paced HIIT-RT (3 times/week).
View Article and Find Full Text PDFPLoS One
January 2025
Wuzhou University, College of Food and Pharmaceutical Engineering, Guangxi, P. R. China.
Ginsenosides are the most important secondary metabolites of ginseng. Ginseng has developed certain insect resistance properties during the course of evolutionary environmental adaptation. However, the mechanism underlying the insect resistance of ginseng is poorly understood.
View Article and Find Full Text PDFInflammopharmacology
January 2025
Department of Community Medicine, Vidhyadeep Homoeopathic Medical College and Research Centre, Vidhyadeep University, Anita, Surat, Gujarat, 394110, India.
Volatile oils (VOs), synonymously termed essential oils (EOs), are highly hydrophobic liquids obtained from aromatic plants, containing diverse organic compounds for example terpenes and terpenoids. These oils exhibit significant neuroprotective properties, containing antioxidant, anti-inflammatory, anti-apoptotic, glutamate activation, cholinesterase inhibitory action, and anti-protein aggregatory action, making them potential therapeutic agents in managing neurodegenerative diseases (NDs). VOs regulate glutamate activation, enhance synaptic plasticity, and inhibit oxidative stress through the stimulation of antioxidant enzymes.
View Article and Find Full Text PDFMol Divers
January 2025
Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
Apigenin, a dietary flavonoid with notable anti-cancer properties, has emerged as a promising candidate for the treatment of neurodegenerative disorders, particularly Alzheimer's disease (AD). While extensively studied for its ability to modulate key molecular pathways in cancers, apigenin also exerts neuroprotective effects by reducing neuroinflammation, protecting neurons from oxidative stress, and enhancing neuronal survival and synaptic plasticity. This dual functionality makes apigenin an intriguing therapeutic option for diseases like AD, where kinase dysregulation plays a central role.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!