The curtaining effect is a common challenge in focused ion beam (FIB) surface preparation. This study investigates methods to reduce this effect during plasma FIB milling of Inconel 718 (nickel-based superalloy). Platinum deposition, silicon mask and XeF gas injection were explored as potential solutions. These methods were evaluated for two ion beam current conditions; a high ion beam intensity condition (30 kV-1 µA) and a medium one (30 kV-100 nA) and their impact on curtaining reduction and resulting cross-section quality was assessed quantitatively thanks to topographic measurements done by atomic force microscopy (AFM). XeF assistance notably improved cross-section quality at medium current level. Pt deposition and Si mask individually mitigated the curtaining effect, with greater efficacy at 100 nA. Both methods also contributed to reducing cross-section curvature, with the Si mask outperforming Pt deposition. However, combining Pt deposition and Si mask with XeF injection led to deterioration of these protective layers and the reappearance of the curtaining effect after a quite short exposure time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jmi.13320 | DOI Listing |
Phys Chem Chem Phys
January 2025
N.N. Semenov Federal Research Center for Chemical Physics, Kosygina str 4, Moscow 119991, Russia.
Growth of lithium whiskers or dendrites is the major obstacle towards safe and stable utilization of lithium metal anodes in rechargeable batteries. In this study, we look deeper into the mechanism of lithium electrodeposition. We find that before lithium whisker or dendrite nucleation occurs, lithium is deposited into the grain boundaries of the metal electrode, which we directly observed in the focused ion beam cross-sections of the lithium electrode.
View Article and Find Full Text PDFFabry-Perot (FP) lasers with a cavity length shorten down to 50 µm were investigated. One or two laser mirrors were formed by focused ion beam etching. InGaAs quantum dots of high density were used as the laser active region.
View Article and Find Full Text PDFPhys Med Biol
January 2025
Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, JAPAN.
Accurate dose predictions are crucial to maximizing the benefits of carbon-ion therapy. Carbon beams incident on the human body cause nuclear interactions with tissues, resulting in changes in the constituent nuclides and leading to dose errors that are conventionally corrected using conventional single-energy computed tomography (SECT). Dual-energy computed tomography (DECT) has frequently been used for stopping power estimation in particle therapy and is well suited for correcting nuclear reactions because of its detailed body-tissue elemental information.
View Article and Find Full Text PDFPhys Med Biol
January 2025
Industrial Engineering, Universita degli Studi di Roma Tor Vergata, Via del Politecnico,1, Roma, 00133, ITALY.
The increasing interest in hadron therapy has heightened the need for accurate and reliable methods to assess radiation quality and the biological effectiveness of particles used in treatment. Microdosimetry has emerged as a key tool for this, demonstrating its potential, reliability, and suitability. In this context, solid-state microdosimeters offer technological advantages over traditional Tissue-Equivalent Proportional Counters, and recent advancements have further improved their performance and reliability.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw 01-142, Poland.
Ultrasmall micro-light-emitting diodes (μLEDs), sized below 10 μm, are indispensable to create the next-generation augmented and virtual reality (AR/VR) devices. Their high brightness and low power consumption could not only enhance the user experience by providing vivid and lifelike visuals but also extend device longevity. However, a notable challenge emerges: a decrease in efficiency with a reduced size.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!