Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Organic near-infrared (NIR) room temperature phosphorescence (RTP) materials become a hot topic in bioimaging and biosensing for the large penetration depth and high signal-to-background ratio (SBR). However, it is challenging to achieve persistent NIR phosphorescence for severe nonradiative transitions by energy-gap law. Herein, a universal system with persistent NIR RTP is built by visible (host) and NIR phosphorescence (guest) materials, which can efficiently suppress the nonradiative transitions by rigid environment of crystalline host materials with good matching, and further promote phosphorescence emission by the additional phosphorescence resonance energy transfer (≈100%) between them. The persistent NIR phosphorescence with ten-folds enhancement of RTP lifetimes, compared to those of guest luminogens, can be achieved by modulation of aggregated structures of host-guest systems. This work provides a convenient way to largely prolong the phosphorescence lifetimes of various NIR luminogens, promoting their application in afterglow imaging with deeper penetration and higher SBRs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11267349 | PMC |
http://dx.doi.org/10.1002/advs.202402846 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!