Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Organosulfur compounds derived from plants of the Allium genus, such as propyl-propane-thiosulfinate (PTS) and propyl-propane-thiosulfonate (PTSO), have been proposed as an alternative in antibiotic resistance. The aim of this study was to compare the activity of these substances with other antibiotics against clinical isolates of carbapenem-resistant (CAR-R) and carbapenem-susceptible (CAR-S) Gram-negative bacteria. A total of 126 clinical isolates of CAR-R and 155 CAR-S bacteria were selected, including Enterobacterales, A. baumannii and P. aeruginosa. The antibiotic susceptibility of all isolates was assessed using the microdilution and Kirby-Bauer methods for PTS, PTSO, amoxicillin/clavulanate, piperacillin/tazobactam, cefotaxime, ceftazidime, cefepime, imipenem, ciprofloxacin, and amikacin. Both PTS and PTSO demonstrated in vitro bactericidal activity against CAR-R Enterobacteriaceae and A. baumannii, with no significant difference in activity compared to their response against CAR-S isolates. However, both compounds were less active against P. aeruginosa than against any of the other bacteria, regardless of their resistance to carbapenems. In all cases, the minimum inhibitory concentration values of PTSO were significantly lower than those of PTS. These findings offer valuable information about the potential antibacterial use of these substances, particularly against infections that currently have limited therapeutic options.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/apm.13420 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!