A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Origins and Importance of Intragranular Cracking in Layered Lithium Transition Metal Oxide Cathodes. | LitMetric

Li-ion batteries have a pivotal role in the transition toward electric transportation. Ni-rich layered transition metal oxide (LTMO) cathode materials promise high specific capacity and lower cost but exhibit faster degradation compared with lower Ni alternatives. Here, we employ high-resolution electron microscopy and spectroscopy techniques to investigate the nanoscale origins and impact on performance of intragranular cracking (within primary crystals) in Ni-rich LTMOs. We find that intragranular cracking is widespread in charged specimens early in cycle life but uncommon in discharged samples even after cycling. The distribution of intragranular cracking is highly inhomogeneous. We conclude that intragranular cracking is caused by local stresses that can have several independent sources: neighboring particle anisotropic expansion/contraction, Li- and TM-inhomogeneities at the primary and secondary particle levels, and interfacing of electrochemically active and inactive phases. Our results suggest that intragranular cracks can manifest at different points of life of the cathode and can potentially lead to capacity fade and impedance rise of LTMO cathodes through plane gliding and particle detachment that lead to exposure of additional surfaces to the electrolyte and loss of electrical contact.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11094680PMC
http://dx.doi.org/10.1021/acsaem.4c00279DOI Listing

Publication Analysis

Top Keywords

intragranular cracking
20
transition metal
8
metal oxide
8
cracking
5
intragranular
5
origins intragranular
4
cracking layered
4
layered lithium
4
lithium transition
4
oxide cathodes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!