Tuning vibration-induced emission through macrocyclization and catenation.

Chem Sci

Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering (SKLPMPE), School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai 200062 China

Published: May 2024

Similar Publications

Probing Cell Membrane Tension Using DNA Framework-Encoded Vibration-Induced Emission Molecular Assemblies.

J Am Chem Soc

December 2024

School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.

Mechanosensitive fluorescent probes are valuable tools for detecting changes in cellular mechanics and viscosity. While numerous mechanosensitive probes have been developed, the construction of molecular assemblies for probing cellular mechanics remains largely unexplored, possibly due to the challenges of designing assemblies with synergistic and integrated functionalities. Here, we report the design and synthesis of mechanosensitive molecular assemblies by integrating DNA frameworks with vibration-induced emission (VIE) probes to enable live-cell membrane tension imaging.

View Article and Find Full Text PDF

Artificial insemination (AI) with liquid-preserved semen has recently become common in pig breeding. The semen doses are produced in a centralized manner at the boar stud and then subsequently distributed and transported to sow farms. However, vibration emissions during transportation by logistic vehicles may adversely affect the quality of boar sperm.

View Article and Find Full Text PDF

Multimode Stimuli-Responsive Room-Temperature Phosphorescence Achieved by Doping Butterfly-like Fluorogens into Crystalline Small-Molecular Hosts.

JACS Au

May 2024

Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China.

Materials with stimuli-responsive purely organic room-temperature phosphorescence (RTP) exempt from exquisite molecular design and complex preparation are highly desirable but still relatively rare. Moreover, most of them work in a single switching mode. Herein, we employ a versatile host-guest-doped strategy to facilely construct efficient RTP systems with multimode stimuli-responsiveness without ingenious molecular design.

View Article and Find Full Text PDF

Tuning vibration-induced emission through macrocyclization and catenation.

Chem Sci

May 2024

Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering (SKLPMPE), School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai 200062 China

In order to investigate the effect of macrocyclization and catenation on the regulation of vibration-induced emission (VIE), the typical VIE luminogen 9,14-diphenyl-9,14-dihydrodibenzo[a, c]phenazine (DPAC) was introduced into the skeleton of a macrocycle and corresponding [2]catenane to evaluate their dynamic relaxation processes. As investigated in detail by femtosecond transient absorption (TA) spectra, the resultant VIE systems revealed precisely tunable emissions upon changing the solvent viscosity, highlighting the key effect of the formation of [2]catenane. Notably, the introduction of an additional pillar[5]arene macrocycle featuring unique planar chirality endows the resultant chiral VIE-active [2]catenane with attractive circularly polarized luminescence in different states.

View Article and Find Full Text PDF

Artificial insemination (AI) with liquid-preserved stallion semen is a widely used reproductive technology. As the demand for AI doses of high-class stallions is transnational, they are frequently exposed to long-distance transport. Since recent studies in boars indicated that vibration emissions caused by transport negatively affected sperm quality in vitro, this study questioned whether sperm quality in stallions is similarly impaired.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!