Similar Publications

Sulfonyl γ-AApeptide tools for modulating biology.

Methods Enzymol

June 2024

Department of Chemistry, University of South Florida, Tampa, FL, United States. Electronic address:

The modulation of biology utilizing foldamers has flourished over the last few decades thanks to their overwhelming promise in their applications in molecular design, catalysis, supramolecular, and rational design. However, the application of peptidomimetics is still restricted due to the limited availability of molecular frameworks and folding propensities. To broaden the scope of foldameric peptidomimetics we proposed the development of sulfonyl-γ-AApeptides-the oligomers of sulfonyl-γ-N-acylated-N-aminoethyl (AA) amino acids, a unique unnatural scaffold that possesses promising potential to modulate protein-protein interactions.

View Article and Find Full Text PDF

Unnatural helical peptidic foldamers as protein segment mimics.

Chem Soc Rev

July 2023

Department of Chemistry, University of South Florida, Tampa, FL 33620, USA.

Unnatural helical peptidic foldamers have attracted considerable attention owing to their unique folding behaviours, diverse artificial protein binding mechanisms, and promising applications in chemical, biological, medical, and material fields. Unlike the conventional α-helix consisting of molecular entities of native α-amino acids, unnatural helical peptidic foldamers are generally comprised of well-defined backbone conformers with unique and unnatural structural parameters. Their folded structures usually arise from unnatural amino acids such as -substituted glycine, -substituted-β-alanine, β-amino acid, urea, thiourea, α-aminoxy acid, α-aminoisobutyric acid, aza-amino acid, aromatic amide, γ-amino acid, as well as sulfono-γ-AA amino acid.

View Article and Find Full Text PDF

New Class of Heterogeneous Helical Peptidomimetics.

Org Lett

July 2015

†Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States.

A new class of unnatural heterogeneous foldamers is reported to contain alternative α-amino acid and sulfono-γ-AA amino acid residues in a 1:1 repeat pattern. Two-dimensional NMR data show that two 1:1 α/sulfono-γ-AA peptides with diverse side chains form analogous right-handed helical structures in solution. The effects of sequence length, side chain, N-capping, and temperature on folding propensity were further investigated using circular dichroism and small-angle X-ray scattering.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!