Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recreational boats are common in many coastal waters, yet their effects on cetaceans and other sensitive marine species remain poorly understood. To address this knowledge gap, we used drone video footage recorded from a recreational boat to quantify how harbour porpoises () responded to the boat approaching at different speeds (10 or 20 knots). Furthermore, we used a hydrophone to record boat noise levels at full bandwidth (0.1-150 kHz) and at the 1/3 octave 16 kHz frequency band for both experimental speeds. The experiments were carried out in shallow waters near Funen, Denmark (55.51° N, 10.79° E) between July and September 2022. Porpoises were more likely to move further away from the path of the boat when approached at 10 knots, but not when approached at 20 knots. In contrast, they swam faster when approached at 20 knots, but not when approached at 10 knots. The recorded received sound level did not depend on how fast the boat approached, suggesting that differences in porpoise responses were related to the speed of the approaching boat rather than to sound intensity. In addition, porpoises generally reacted within close proximity (<200 m) to the approaching boat and quickly (<50 s) resumed their natural behaviour once the boat had passed, indicating that the direct impact of small vessels on porpoise behaviour was most likely small. Nevertheless, repeated exposure to noise from small vessels may influence porpoises' activity or energy budget, and cause them to relocate from disturbed areas. The approach used in this study increases our understanding of recreational boats' impact on harbour porpoises and can be used to inform efficient mitigation measures to help focus conservation efforts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11096697 | PMC |
http://dx.doi.org/10.1002/ece3.11433 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!