Avihepadnavirus is a genus of the Hepadnaviridae family. It primarily infects birds, including species of duck, geese, cranes, storks, and herons etc. To understand the genetic relatedness and evolutionary diversity among avihepadnavirus strains, a comprehensive analysis of the available 136 full-length viral genomes ( = 136) was conducted. The genomes were classified into two major genotypes, i.e., GI and GII. GI viruses were further classified into 8 sub-genotypes including DHBV-I (duck hepatitis B virus-I), DHBV-II (Snow goose Hepatitis B, SGHBV), DHBV-III, RGHBV (rossgoose hepatitis B virus), CHBV (crane hepatitis B virus), THBV (Tinamou hepatitis B virus), STHBV (stork hepatitis B virus), and HHBV (Heron hepatitis B virus). DHBV-I contains two sub-clades DHBV-Ia and DHBV-Ib. Parrot hepatitis B virus (PHBV) stains fall into GII which appeared as a separate phylogenetic branch/clade. All the subtypes of viruses in GI and GII seem to be genetically connected with viruses of DHBV-I by multiple mutational steps in phylogeographic analysis. Furthermore, 16 potential recombination events among different sub-genotypes in GI and one in GII were identified, but none of which is inter-genotypic between GI and GII. Overall, the results provide a whole picture of the genetic relatedness of avihepadnavirus strains, which may assist in the surveillance of virus spreading.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11096447PMC
http://dx.doi.org/10.3389/fvets.2024.1385033DOI Listing

Publication Analysis

Top Keywords

hepatitis virus
24
genetic relatedness
8
avihepadnavirus strains
8
hepatitis
8
virus
7
gii
5
genetic diversity
4
diversity phylogeographic
4
phylogeographic dynamics
4
avihepadnavirus
4

Similar Publications

Hepatitis C virus (HCV) presents a significant global health issue due to its widespread prevalence and the absence of a reliable vaccine for prevention. While significant progress has been achieved in therapeutic interventions since the disease was first identified, its resurgence underscores the need for innovative strategies to combat it. The nonstructural protein NS5A is crucial in the life cycle of the HCV, serving as a significant factor in both viral replication and assembly processes.

View Article and Find Full Text PDF

Background: Conflicting results have been reported on the impact of tenofovir versus entecavir on liver-related outcomes.

Aims: To explore trends in clinical outcomes in chronic hepatitis B virus (HBV)-infected patients and compare the impact of tenofovir versus entecavir on the risk of hepatocellular carcinoma (HCC), liver transplantation (LT) and mortality.

Methods: We used the French National Health Insurance Databases (SNDS) to identify HBV-infected patients.

View Article and Find Full Text PDF

Human immunodeficiency virus (HIV), hepatitis B virus (HBV), and hepatitis C virus (HCV) are known as the most common blood-borne viral infections worldwide. Individuals referring to drop-in centers (DICs) are considered high-risk people exposed to infection with blood-borne viruses. The purpose of this study was to investigate the prevalence of HIV, HBV, and HCV infections among women referred to DICs in Lorestan Province, western Iran.

View Article and Find Full Text PDF

Comparison of models to predict incident chronic liver disease: a systematic review and external validation in Chinese adults.

BMC Med

December 2024

Department of Epidemiology & Biostatistics, School of Public Health, Peking University, 38 Xueyuan Road, Beijing, 100191, China.

Background: Risk prediction models can identify individuals at high risk of chronic liver disease (CLD), but there is limited evidence on the performance of various models in diverse populations. We aimed to systematically review CLD prediction models, meta-analyze their performance, and externally validate them in 0.5 million Chinese adults in the China Kadoorie Biobank (CKB).

View Article and Find Full Text PDF

The natural history of chronic hepatitis C virus (HCV) infection has changed after the introduction of direct-acting antiviral agents (DAAs). Screening programs have been ongoing to reach the World Health Organisation's goal of HCV elimination by 2030, and most infected people are eligible for treatment. Given the increased cardiovascular risk in people with HCV infection and the metabolic pathways of DAAs, it is not uncommon to face the issue of drug-drug interactions (DDIs) with antiplatelet or anticoagulant drugs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!