A Monte Carlo simulation study was conducted to compare fit indices used for detecting the correct latent class in three dichotomous mixture item response theory (IRT) models. Ten indices were considered: Akaike's information criterion (AIC), the corrected AIC (AICc), Bayesian information criterion (BIC), consistent AIC (CAIC), Draper's information criterion (DIC), sample size adjusted BIC (SABIC), relative entropy, the integrated classification likelihood criterion (ICL-BIC), the adjusted Lo-Mendell-Rubin (LMR), and Vuong-Lo-Mendell-Rubin (VLMR). The accuracy of the fit indices was assessed for correct detection of the number of latent classes for different simulation conditions including sample size (2,500 and 5,000), test length (15, 30, and 45), mixture proportions (equal and unequal), number of latent classes (2, 3, and 4), and latent class separation (no-separation and small separation). Simulation study results indicated that as the number of examinees or number of items increased, correct identification rates also increased for most of the indices. Correct identification rates by the different fit indices, however, decreased as the number of estimated latent classes or parameters (i.e., model complexity) increased. Results were good for BIC, CAIC, DIC, SABIC, ICL-BIC, LMR, and VLMR, and the relative entropy index tended to select correct models most of the time. Consistent with previous studies, AIC and AICc showed poor performance. Most of these indices had limited utility for three-class and four-class mixture 3PL model conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11095322PMC
http://dx.doi.org/10.1177/00131644231180529DOI Listing

Publication Analysis

Top Keywords

fit indices
16
latent classes
12
dichotomous mixture
8
irt models
8
simulation study
8
latent class
8
aic aicc
8
sample size
8
relative entropy
8
number latent
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!