Colloid Transport in Bicontinuous Nanoporous Media.

Langmuir

Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242, United States.

Published: May 2024

Colloid transport and retention in porous media are critical processes influencing various Earth science applications, from groundwater remediation to enhanced oil recovery. These phenomena become particularly complex in the confined spaces of nanoporous media, where strong boundary layer effects and nanoconfinement significantly alter colloid behavior. In this work, we use particle dynamics models to simulate colloid transport and retention processes in bicontinuous nanoporous (BNP) media under pressure gradients. By utilizing particle-based models, we track the movement of each colloid and elucidate the underlying colloid retention mechanisms. Under unfavorable attachment conditions, the results reveal two colloid retention mechanisms: physical straining and trapping in low-flow zone. Furthermore, we investigate the effects of critical factors including colloid volume fraction, , pressure difference, Δ, interaction between colloids and BNP media, , and among colloids, , on colloid transport. Analysis of breakthrough curves and colloid displacements demonstrates that higher values of , lower values of Δ, and strong attractions significantly increase colloid retention, which further lead to colloid clogging and jamming. In contrast, has minimal impact on colloid transport due to the limited colloid-colloid interaction in nanoporous channels. This work provides critical insights into the fundamental factors governing colloid transport and retention within stochastic nanoporous materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11140755PMC
http://dx.doi.org/10.1021/acs.langmuir.4c00037DOI Listing

Publication Analysis

Top Keywords

colloid transport
24
colloid
14
transport retention
12
colloid retention
12
bicontinuous nanoporous
8
nanoporous media
8
bnp media
8
retention mechanisms
8
retention
6
nanoporous
5

Similar Publications

Polyelectrolyte multilayer (PEM) membranes, with advantageous features of versatile chemistry and structures, are driving the development of advanced nanofiltration (NF) membranes with exceptional performance. While developing a printing method holds great promise for the eventual mass production of these membranes, reports on the printing method and the underlying mechanisms of membrane formation are currently scarce. Herein, we develop an aerosol-assisted printing (AAP) system for fabricating PEM NF membranes with highly tunable separation characteristics.

View Article and Find Full Text PDF

The discharge of oil-laden wastewater from industrial processes and the frequent occurrence of oil spills pose severe threats to the ecological environment and human health. Membrane materials with special wettability have garnered attention for their ability to achieve efficient oil-water separation by leveraging the differences in wettability at the oil-water interface. These materials are characterized by their simplicity, energy efficiency, environmental friendliness, and reusability.

View Article and Find Full Text PDF

Efficacy and durability of cobalt sulfide nanoparticles and axial sulfur-coordinated cobalt single-atom composite sites in hydrogenative nitroaromatics decontamination.

J Colloid Interface Sci

January 2025

Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China. Electronic address:

Emerging single-atom materials and metal sulfides hold significant promise as alternatives to precious metal catalysts for nitroaromatics conversion; however, their intrinsic activity and durability remain insufficiently understood. Herein, sulfur and nitrogen co-doped carbon matrices incorporating CoS nanoparticles and single-atom Co with Co-N-S coordination were constructed through a facile pyrolysis approach. Advanced characterization techniques, such as X-ray absorption fine structure (XAFS) and aberration-corrected electron microscopy, unveiled unique structural features underpinning exceptional catalytic efficiency and recyclability.

View Article and Find Full Text PDF

Experimental investigations of colloid-associated metal mobility in mine-impacted wetland sediment.

Heliyon

January 2025

Department of Earth Sciences, Carleton University, 1125 Colonel By Dr, Ottawa, ON, K1S 5B6, Canada.

Metal mining operations can release toxic metals to surrounding environments where site-specific conditions control the movement of contaminants. Colloid-facilitated transport, the transport of contaminants with small, mobile particles, has been recognized as a potential contaminant transport vector in groundwater, but it remains unclear under what conditions it is important and whether neutral, metal-rich mine drainage from legacy mining impacts this transport vector. This work presents a set of laboratory column experiments that study the effect of colloids on metal mobility in saturated, wetland sediment that has been receiving neutral mine drainage for nearly a century, using mixed and single metal input solutions at neutral pH.

View Article and Find Full Text PDF

Fe diaspora titanium dioxide and graphene: A study of conductive powder materials and coating applications.

J Colloid Interface Sci

January 2025

Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013 Liaoning, China. Electronic address:

Developing new conductive primers to ensure electrostatic spraying is crucial in response to the call for lightweight production of new energy vehicles. We report a stabilized material, Fe-T/G, of Fe-doped TiO composite graphene synthesized by a simple hydrothermal and electrostatic self-assembly method. The resistivity decreases from 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!