Crystalline MnCO@Amorphous MnO Composite as Cathode Material for High-Performance Aqueous Zinc-Ion Batteries.

Inorg Chem

Institute for Energy Research, Zhenjiang Key Laboratory of Power Battery and Energy Storage, Jiangsu University, Zhenjiang 212013, China.

Published: May 2024

Rechargeable aqueous zinc-ion batteries (RAZIBs) have received extensive attention because of their advantages of low cost, high safety, and nontoxicity. However, problems such as dissolution of the active cathode material, dendrites/passivation of the zinc anode, and slow reaction kinetics hindered their further applications. In this work, a crystalline/amorphous composite-type material composed of crystalline MnCO and amorphous MnO was prepared and used as the cathode material for RAZIBs. The MnCO@amorphous MnO (MnCO@A-MnO) composite possesses the merits of both the pure crystalline phase of MnCO and the amorphous phase of MnO, which can deliver better electrochemical performance than the corresponding single component in repeated cycles. In addition, crystalline MnCO undergoes a complex phase transition to the active MnO during the first charge process, providing the composite with a stable structure and additional electrochemical capacity. The electrochemical measurement results indicate that the MnCO@A-MnO electrode can display high reversible discharge capacity at 0.1 A g, excellent rate performance at 5.0 A g, and long cycling stability over 2000 cycles, showing great potential as a cathode material for high-performance RAZIBs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.4c00622DOI Listing

Publication Analysis

Top Keywords

cathode material
16
mnco@amorphous mno
8
material high-performance
8
aqueous zinc-ion
8
zinc-ion batteries
8
crystalline mnco
8
mnco amorphous
8
mno
5
material
5
crystalline
4

Similar Publications

Ternary NASICON-Type NaVMnFe(PO)/NC@CNTs Cathode with Reversible Multielectron Reaction and Long Life for Na-Ion Batteries.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou 730050, China.

Na superionic conductor (NASICON)-structure NaMnV(PO) (NVMP) electrode materials reveal highly attractive application prospects due to ultrahigh energy density originating from two-electron reactions. Nevertheless, NVMP also encounters challenges with its poor electronic conductivity, Mn dissolution, and Jahn-Teller distortion. To address this issue, utilizing N-doped carbon layers and carbon nanotubes (CNTs) for dual encapsulation enhances the material's electronic conductivity, creating an effective electron transport network that promotes the rapid diffusion and storage of Na.

View Article and Find Full Text PDF

Point of Care (POC) diagnosis provides an effective approach for controlling and managing Neglected Tropical Diseases (NTDs). Electrochemical biosensors are well-suited for molecular diagnostics due to their high sensitivity, cost-effectiveness, and ease of integration into POC devices. Schistosomiasis is a prominent NTD highly prevalent in Africa, Asia, and Latin America, with significant socioeconomic implications such as discrimination, reduced work capacity, or mortality, perpetuating the cycle of poverty in affected regions worldwide.

View Article and Find Full Text PDF

Peripheral arterial chemoreceptors monitor the levels of arterial blood gases and adjust ventilation and perfusion to meet metabolic demands. These chemoreceptors are present in all vertebrates studied to date but have not been described fully in reptiles other than turtles. The goals of this study were to 1) identify functional chemosensory areas in the South American rattlesnake (Crotalus durissus) 2) determine the neurochemical content of putative chemosensory cells in these areas and 3) determine the role each area plays in ventilatory and cardiovascular control.

View Article and Find Full Text PDF

Unraveling Redox Mediator-Assisted Chemical Relithiation Mechanism for Direct Recycling of Spent Ni-Rich Layered Cathode Materials.

Adv Sci (Weinh)

January 2025

Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, Republic of Korea.

The increasing demand for Li-ion batteries across various energy storage applications underscores the urgent need for environmentally friendly and efficient direct recycling strategies to address the issue of substantial cathode waste. Diverse reducing agents for Li supplements, such as quinone molecules, have been considered to homogenize the Li distribution in the cathode materials obtained after cycling; however, the detailed reaction mechanism is still unknown. Herein, the ideal electrochemical potential factor and reaction mechanism of the redox mediator 3,5-di-tert-butyl-o-benzoquinone (DTBQ) for the chemical relithiation of high-Ni-layered cathodes are elucidated.

View Article and Find Full Text PDF

The conductivity of AgNWs electrodes can be enhanced by incorporating Ag grids, thereby facilitating the development of large-area flexible organic solar cells (FOSCs). Ag grids from vacuum evaporation offer the advantages of simple film formation, adjustable thickness, and unique structure. However, the complex 3D multi-component structure of AgNWs electrodes will exacerbate the aggregation of large Ag particles, causing the device short circuits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!