This article confronts the formidable task of exploring chaos within hidden attractors in nonlinear three-dimensional autonomous systems, highlighting the lack of established analytical and numerical methodologies for such investigations. As the basin of attraction does not touch the unstable manifold, there are no straightforward numerical processes to detect those attractors and one has to implement special numerical and analytical strategies. In this article we present an alternative approach that allows us to predict the basin of attraction associated with hidden attractors, overcoming the existing limitations. The method discussed here is based on the Kosambi-Cartan-Chern theory which enables us to conduct a comprehensive theoretical analysis by means of evaluating geometric invariants and instability exponents, thereby delineating the regions encompassing chaotic and periodic zones. Our analytical predictions are thoroughly validated by numerical results.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.109.044205DOI Listing

Publication Analysis

Top Keywords

hidden attractors
12
attractors nonlinear
8
autonomous systems
8
basin attraction
8
kosambi-cartan-chern perspective
4
perspective chaos
4
chaos unveiling
4
unveiling hidden
4
attractors
4
nonlinear autonomous
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!