Dimensional crossover in Kardar-Parisi-Zhang growth.

Phys Rev E

Departamento de Física, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.

Published: April 2024

Two-dimensional (2D) Kardar-Parisi-Zhang (KPZ) growth is usually investigated on substrates of lateral sizes L_{x}=L_{y}, so that L_{x} and the correlation length (ξ) are the only relevant lengths determining the scaling behavior. However, in cylindrical geometry, as well as in flat rectangular substrates L_{x}≠L_{y} and, thus, the surfaces can become correlated in a single direction, when ξ∼L_{x}≪L_{y}. From extensive simulations of several KPZ models, we demonstrate that this yields a dimensional crossover in their dynamics, with the roughness scaling as W∼t^{β_{2D}} for t≪t_{c} and W∼t^{β_{1D}} for t≫t_{c}, where t_{c}∼L_{x}^{1/z_{2D}}. The height distributions (HDs) also cross over from the 2D flat (cylindrical) HD to the asymptotic Tracy-Widom Gaussian orthogonal ensemble (Gaussian unitary ensemble) distribution. Moreover, 2D to one-dimensional (1D) crossovers are found also in the asymptotic growth velocity and in the steady-state regime of flat systems, where a family of universal HDs exists, interpolating between the 2D and 1D ones as L_{y}/L_{x} increases. Importantly, the crossover scalings are fully determined and indicate a possible way to solve 2D KPZ models.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.109.L042102DOI Listing

Publication Analysis

Top Keywords

dimensional crossover
8
kpz models
8
crossover kardar-parisi-zhang
4
kardar-parisi-zhang growth
4
growth two-dimensional
4
two-dimensional kardar-parisi-zhang
4
kardar-parisi-zhang kpz
4
kpz growth
4
growth investigated
4
investigated substrates
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!