A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Noise-induced excitation wave and its size distribution in coupled FitzHugh-Nagumo equations on a square lattice. | LitMetric

Noise-induced excitation wave and its size distribution in coupled FitzHugh-Nagumo equations on a square lattice.

Phys Rev E

Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan.

Published: April 2024

There are various research topics such as stochastic resonance, coherent resonance, and neuroavalanche in excitable systems under external noises. We perform numerical simulation of coupled noisy FitzHugh-Nagumo equations on the square lattice. Excitation waves are generated most efficiently at an intermediate noise strength. The cluster size distributions obey a power-law-like distribution at a certain parameter range. However, we consider that this is not a self-organized critical phenomenon, partly because the exponent of the power law is not constant. We have studied the propagation of excitation waves in the coupled noisy FitzHugh-Nagumo equations with a one-dimensional pacemaker region and found that there is a phase-transition-like phenomenon from the short-range propagation to the whole-system propagation by changing the noise strength T. The power-law distribution is observed most clearly near the phase transition of the propagation of excitation waves in the coupled noisy FitzHugh-Nagumo equations without the one-dimensional pacemaker.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.109.044211DOI Listing

Publication Analysis

Top Keywords

coupled noisy
12
noisy fitzhugh-nagumo
12
excitation waves
12
fitzhugh-nagumo equations on
8
equations on square
8
square lattice
8
noise strength
8
propagation excitation
8
waves coupled
8
one-dimensional pacemaker
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!