Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The density of the side chain introduced to a polymer main chain greatly influences the properties and functions of the polymer. This work first reports on the packing structure and properties at an interface of a poly(substituted methylene) where an azobenzene side chain is introduced at every carbon atom in the main chain (C1PAz). The structure and properties are compared with those of a conventional vinyl polymer [poly(methacrylate)] possessing an identical side-chain structure (C2PAz). The packing structure in the bulk state analyzed by X-ray measurements revealed that C1PAz adopts a highly ordered rectangular unit cell structure, whereas C2PAz shows a less ordered lamellar one. Langmuir film balance experiments indicated that both polymers with the -azobenzene give essentially the identical 2D side-chain occupying area on water, which agrees well with the smectic B (hexatic packing) model based on the X-ray data. Upon transfer onto a solid substrate, only C1PAz shows a conformational transformation to a spread bilayer-type layer, most probably due to conformational frustration stemming from the crowding of the side chains. This study proposes new insights into the effects of side-chain density on the self-assembly and photoreaction of azobenzene-containing polymers, which are expected to expand the possibilities of polymer design for various applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.4c01168 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!