A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multimorbidity prevalence and health outcome prediction: assessing the impact of lookback periods, disease count, and definition criteria in health administrative data at the population-based level. | LitMetric

Background: Health administrative databases play a crucial role in population-level multimorbidity surveillance. Determining the appropriate retrospective or lookback period (LP) for observing prevalent and newly diagnosed diseases in administrative data presents challenge in estimating multimorbidity prevalence and predicting health outcome. The aim of this population-based study was to assess the impact of LP on multimorbidity prevalence and health outcomes prediction across three multimorbidity definitions, three lists of diseases used for multimorbidity assessment, and six health outcomes.

Methods: We conducted a population-based study including all individuals ages > 65 years on April 1st, 2019, in Québec, Canada. We considered three lists of diseases labeled according to the number of chronic conditions it considered: (1) L60 included 60 chronic conditions from the International Classification of Diseases (ICD); (2) L20 included a core of 20 chronic conditions; and (3) L31 included 31 chronic conditions from the Charlson and Elixhauser indices. For each list, we: (1) measured multimorbidity prevalence for three multimorbidity definitions (at least two [MM2+], three [MM3+] or four (MM4+) chronic conditions); and (2) evaluated capacity (c-statistic) to predict 1-year outcomes (mortality, hospitalisation, polypharmacy, and general practitioner, specialist, or emergency department visits) using LPs ranging from 1 to 20 years.

Results: Increase in multimorbidity prevalence decelerated after 5-10 years (e.g., MM2+, L31: LP = 1y: 14%, LP = 10y: 58%, LP = 20y: 69%). Within the 5-10 years LP range, predictive performance was better for L20 than L60 (e.g., LP = 7y, mortality, MM3+: L20 [0.798;95%CI:0.797-0.800] vs. L60 [0.779; 95%CI:0.777-0.781]) and typically better for MM3 + and MM4 + definitions (e.g., LP = 7y, mortality, L60: MM4+ [0.788;95%CI:0.786-0.790] vs. MM2+ [0.768;95%CI:0.766-0.770]).

Conclusions: In our databases, ten years of data was required for stable estimation of multimorbidity prevalence. Within that range, the L20 and multimorbidity definitions MM3 + or MM4 + reached maximal predictive performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11097445PMC
http://dx.doi.org/10.1186/s12874-024-02243-0DOI Listing

Publication Analysis

Top Keywords

multimorbidity prevalence
24
chronic conditions
20
multimorbidity definitions
12
multimorbidity
11
prevalence health
8
health outcome
8
health administrative
8
administrative data
8
population-based study
8
three multimorbidity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!