Unlabelled: In the longitudinal, retrospective study, the ability of the FRAX, Garvan, and POL-RISK algorithms to predict osteoporotic fractures was compared in a group of 457 women. Using the rigid threshold of 10% showed a significant discrepancy in sensitivity and specificity of all tools. New thresholds for high risk of fractures were established for each calculator separately: 6.3% for FRAX major fracture, 20.0% for Garvan any fracture, and 18.0% for POL-RISK any fracture. Such thresholds allow for improving the diagnostic accuracy of all three calculators.
Introduction: The aim of the longitudinal, retrospective study was to compare three tools designed to assess fracture risk: FRAX, Garvan, and POL-RISK in their prediction of fracture incidence.
Material: The study group consisted of 457 postmenopausal women with a mean age of 64.21 ± 5.94 years from the Gliwice Osteoporosis (GO) Study. Comprehensive data on clinical factors related to fractures were collected for all participants. Bone densitometry was performed at the proximal femur using the Prodigy device (GE, USA). Fracture risk was established using the FRAX, Garvan, and POL-RISK algorithms. Data on the incidence of osteoporotic fractures were collected over the last 10 years.
Results: During the period of observation 72, osteoporotic fractures occurred in 63 subjects. For a preliminary comparison of the predictive value of analyzed diagnostic tools, the fracture risk threshold of 10% was used. For FRAX, the fracture probability exceeding 10% was observed only in 11 subjects who experienced fractures; thus, the fracture was properly predicted only in 22.9% of women. For Garvan, the respective value was 90.5%, and for POL-RISK, it was 98.4%. That gave a very low true positive value for FRAX and a very high false positive value for Garvan and POL-RISK. Based on ROC curves, new thresholds for high risk of fractures were established for each calculator separately: 6.3% for FRAX major fracture, 20.0% for Garvan any fracture, and 18.0% for POL-RISK any fracture. Such thresholds improve the diagnostic accuracy of all compared fracture prediction tools.
Conclusion: The current study showed that different fracture risk assessment tools, although having similar clinical purposes, require different cut-off thresholds for making therapeutic decisions. Better identification of patients requiring therapy based on such an approach may help reduce the number of new fractures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11098877 | PMC |
http://dx.doi.org/10.1007/s11657-024-01392-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!