Growing evidence indicates that plant community structure and traits have changed under climate warming, especially in cold or high-elevation regions. However, the impact of these warming-induced changes on ecosystem carbon sequestration remains unclear. Using a warming experiment on the high-elevation Qinghai-Tibetan Plateau, we found that warming not only increased plant species height but also altered species composition, collectively resulting in a taller plant community associated with increased net ecosystem productivity (NEP). Along a 1,500 km transect on the Plateau, taller plant community promoted NEP and soil carbon through associated chlorophyll content and other photosynthetic traits at the community level. Overall, plant community height as a dominant trait is associated with species composition and regulates ecosystem C sequestration in the high-elevation biome. This trait-based association provides new insights into predicting the direction, magnitude and sensitivity of ecosystem C fluxes in response to climate warming.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11208140 | PMC |
http://dx.doi.org/10.1038/s41477-024-01705-z | DOI Listing |
Microbiol Spectr
January 2025
Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, USA.
Unlabelled: Studies have suggested that phytochemicals in green tea have systemic anti-inflammatory and neuroprotective effects. However, the mechanisms behind these effects are poorly understood, possibly due to the differential metabolism of phytochemicals resulting from variations in gut microbiome composition. To unravel this complex relationship, our team utilized a novel combined microbiome analysis and metabolomics approach applied to low complexity microbiome (LCM) and human colonized (HU) gnotobiotic mice treated with an acute dose of powdered matcha green tea.
View Article and Find Full Text PDFJ Contemp Dent Pract
September 2024
Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil; Department of Dentistry, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands, ORCID: https://orcid.org/0000-0002-5166-8233.
Aim: This study aimed to assess if the addition of origanum oil to denture materials could decrease microorganisms counts and biofilm formation without changing their mechanical/surface properties.
Materials And Methods: A total of 66 resilient denture liner discs (SoftConfort, Dencril Comércio de Plásticos Ltda, SP, Brazil) were prepared with fixed dimensions of 10 × 3 mm for biofilm assay ( = 36) and 12 × 2 mm for sorption-solubility tests ( = 30) containing three oil concentrations - 0, 2.5 and 5%, thereby = 12 per each group samples for biofilm assay and = 10 per each group for sorption-solubility test respectively.
Arbuscular mycorrhizal fungi (AMF, phylum Glomeromycota) are essential to plant community diversity and ecosystem functioning. However, increasing human land use represents a major threat to native AMF globally. Characterizing the loss of AMF diversity remains challenging because many taxa are undescribed, resulting in poor documentation of their biogeography and family-level disturbance sensitivity.
View Article and Find Full Text PDFPeerJ
January 2025
Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, Inner Mongolia, China.
Grazing can alter the physicochemical properties of soil and quickly influence the composition of microbial communities. However, the effects of grazing intensity on fungal community composition in different soil depth remain unclear. On the Inner Mongolia Plateau, we studied the effects of grazing intensity treatments including no grazing (NG), light grazing (LG), moderate grazing (MG), heavy grazing (HG), and over grazing (OG) on the physicochemical properties and fungal community composition of surface (0-20 cm) and subsurface (20-40 cm) soil layers.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Beijing Life Science Academy, Beijing, 102200, China.
Background: Fungal communities around plant roots play crucial roles in maintaining plant health. Nonetheless, the responses of fungal communities to bacterial wilt disease remain poorly understood. Here, the structure and function of fungal communities across four consecutive compartments (bulk soil, rhizosphere, rhizoplane and root endosphere) were investigated under the influence of bacterial wilt disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!