Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Most reported thin-film piezoelectric energy harvesters have been based on cantilever-type crystalline ferroelectric oxide thin films deposited on rigid substrates, which utilize vibrational input sources. Herein, we introduce flexible amorphous thin-film energy harvesters based on perovskite CaCuTiO (CCTO) thin films on a plastic substrate for highly competitive electromechanical energy harvesting. The room-temperature sputtering of CCTO thin films enable the use of plastic substrates to secure reliable flexibility, which has not been available thus far. Surprisingly, the resultant amorphous nature of the films results in an output voltage and power density of ~38.7 V and ~2.8 × 10 μW cm, respectively, which break the previously reported record for typical polycrystalline ferroelectric oxide thin-film cantilevers. The origin of this excellent electromechanical energy conversion is systematically explored as being related to the localized permanent dipoles of TiO octahedra and lowered dielectric constant in the amorphous state, depending on the stoichiometry and defect states. This is the leading example of a high-performance flexible piezoelectric energy harvester based on perovskite oxides not requiring a complex process for transferring films onto a plastic substrate.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11099020 | PMC |
http://dx.doi.org/10.1038/s41467-024-48551-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!