Laboratory studies on embryos of salmonids, such as the brown trout (Salmo trutta), have been extensively used to study environmental stress and how responses vary within and between natural populations. These studies are based on the implicit assumption that early life-history traits are relevant for stress tolerance in the wild. Here we test this assumption by combining two data sets from studies on the same 60 families. These families had been experimentally produced from wild breeders to determine, in separate samples, (1) stress tolerances of singly kept embryos in the laboratory and (2) growth of juveniles during 6 months in the wild. We found that growth in the wild was well predicted by the larval size of their full sibs in the laboratory, especially if these siblings had been experimentally exposed to a pathogen. Exposure to the pathogen had not caused elevated mortality among the embryos but induced early hatching. The strength of this stress-induced change of life history was a significant predictor of juvenile growth in the wild: the stronger the response in the laboratory, the slower the growth in the wild. We conclude that embryo performance in controlled environments can be a useful predictor of juvenile performance in the wild.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ecy.4303 | DOI Listing |
Prog Neurobiol
December 2024
Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea. Electronic address:
Inflammation is a major mechanism of photoreceptor cell death in the retina during macular degeneration leading to the blindness. In this study, we investigated the role of the kinase molecule Zap70, which is an inflammatory regulator of the systemic immune system, to elucidate the control mechanism of inflammation in the retina. We observed activated microglial cells migrated and populated the retinal layer following blue LED-induced photoreceptor degeneration and activated microglial cells in the LED-injured retina expressed Zap70, unlike the inactive microglial cells in the normal retina.
View Article and Find Full Text PDFPlant Sci
December 2024
State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China. Electronic address:
Cotton is an important source of natural fibers. The AP2/ethylene response factor (ERF) family is one of the largest plant-specific transcription factors (TFs) groups, playing key roles in plant growth and development. However, the role of ERF TFs in cotton's growth and development remains unclear.
View Article and Find Full Text PDFPlant Mol Biol
December 2024
State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding laboratoryr, Nanjing Agricultural University, Nanjing, 210095, China.
Plant Physiol Biochem
December 2024
College of Enology, Northwest A & F University, Yangling, 712100, Shaanxi, China. Electronic address:
As a new plant hormone, strigolactone not only promotes leaf senescence, inhibits plant branching and regulates root structure, but also plays an important role in abiotic stress resistance. However, little is known about the function of VvCCD7 under abiotic stress, a key gene for the synthesis of strigolactone in grapevine. In this study, VvCCD7 gene was cloned from grape leaves of 'Cabernet Sauvignon'.
View Article and Find Full Text PDFNutrition
November 2024
Department of Integrated Applied Life Science, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, Kofu, Yamanashi, Japan; Department of Local Produce and Food Sciences, Laboratory of Food and Nutritional Sciences, Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Yamanashi, Japan. Electronic address:
Objectives: Gastrointestinal hormones, such as glucagon-like peptide 1 (GLP-1), gastric inhibitory polypeptide, and peptide YY (PYY) are important for reducing malnutrition at older ages because they are related to assimilation and feeding behavior. Medium-chain triacylglycerol (MCT) ameliorates metabolic symptoms and frailty in adults; however, whether it has the same effect in old age is unknown. To address this, we examined the changes in insulin and gastrointestinal hormones in aged Brd4 (+/-) mice exhibiting symptoms of old age.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!