Aims: Steroidogenic acute regulatory (StAR)-related lipid transfer domain-3 (STARD3) is a sterol-binding protein that facilitates cholesterol transport between cellular organelles. Cholesterol accumulation in podocytes directly contributes to the pathogenesis of albuminuria and renal injury under the condition of diabetic kidney disease (DKD). The aim of this study is to determine the role of STARD3 on the intracellular distribution of cholesterol within podocytes.

Methods: In vivo and in vitro models of diabetes were performed. The protein levels of STARD3, Niemann-Pick disease type C1 (NPC1), and Niemann-Pick disease type C2 (NPC2) were respectively detected by western blot analysis, immunohistochemistry, and immunofluorescence. Filipin staining was used to evaluate the subcellular localization of cholesterol in podocytes. Mitochondrial damage was evaluated using JC-1 (CBIC2) and ROS (reactive oxygen species) assays.

Key Findings: Upregulation of STARD3 under diabetes and hyperglycemia increases cholesterol transport from the late endosomal/lysosomal (LE/LY) to mitochondria, leading to mitochondrial cholesterol accumulation and cell injury in podocytes. Conversely, downregulating STARD3 expression attenuated mitochondrial cholesterol accumulation, and improved mitochondrial homeostasis.

Significance: STARD3 may govern intracellular cholesterol transport in podocytes, subsequently leading to regulation of mitochondrial metabolism. Therefore, targeting STARD3 emerges as a potential therapeutic strategy to mitigate diabetes-induced mitochondrial cholesterol accumulation and associated injury in podocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2024.122722DOI Listing

Publication Analysis

Top Keywords

cholesterol accumulation
20
cholesterol transport
16
mitochondrial cholesterol
16
cholesterol
11
niemann-pick disease
8
disease type
8
injury podocytes
8
mitochondrial
7
stard3
7
accumulation
5

Similar Publications

Caveolin-1 mitigates the advancement of metabolic dysfunction-associated steatotic liver disease by reducing endoplasmic reticulum stress and pyroptosis through the restoration of cholesterol homeostasis.

Int J Biol Sci

January 2025

Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.

Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most prevalent chronic liver disease worldwide, which has the potential to advance to fibrosis. CAV1 has the effects of improving liver lipid deposition in MASLD, however, the potential mechanism is largely unknown. Here, we establish a MASLD mouse model in CAV1 knockout (KO) mice and perform transcriptome analysis on livers from mice to investigate the effects of CAV1 in MASLD progression.

View Article and Find Full Text PDF

Alterations in bile acid profile and pathways contribute to hepatic inflammation in cancer cachexia, a syndrome worsening the prognosis of cancer patients. As the gut microbiota impinges on host metabolism through bile acids, the current study aimed to explore the functional contribution of gut microbial dysbiosis to bile acid dysmetabolism and associated disorders in cancer cachexia. Using three mouse models of cancer cachexia (the C26, MC38 and HCT116 models), we evidenced a reduction in the hepatic levels of several secondary bile acids, mainly taurodeoxycholic (TDCA).

View Article and Find Full Text PDF

Glycyrrhiza uralensis Fisch. attenuates Dioscorea bulbifera L.-induced liver injury by regulating the FXR/Nrf2-BAs-related proteins and intestinal microbiota.

J Ethnopharmacol

January 2025

Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Century Avenue, Xianyang 712046, People's Republic of China. Electronic address:

Ethnopharmacological Relevance: Dioscorea bulbifera L. (DBL) was a traditional Chinese medicine commonly used to treat goitre and cancer. Nevertheless, its clinical application may lead to liver injury.

View Article and Find Full Text PDF

Background/aims: Dexamethasone (DEX) is a widely used exogenous therapeutic glucocorticoid in clinical settings. Its long-term use leads to many side effects. However, its effect on metabolic disorders in individuals on a high-fat diet (HFD) remains poorly understood.

View Article and Find Full Text PDF

Background: Severe disruption of lipid metabolism in vivo is one of the central mechanisms in the development of atherosclerotic vascular injury (AVI). Reverse cholesterol transport (RCT) plays a pivotal role in eliminating excess cholesterol, preventing lipid deposition in the aorta, and reducing plaque formation associated with AVI. Floralozone (FL) reduces endothelial cell injury in AVI rats by regulating sphingosine-1-phosphate (S1P) expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!