There has been an increased ability to investigate the human microbiota through next-generation sequencing and functional assessment. This advancement has rapidly expanded our ability to study and manipulate the gastrointestinal microbiome to mitigate disease. Fecal microbiota transplantation, a therapy that broadly transfers the entire intestinal ecosystem, has been explored as a potential therapeutic in a variety of gastrointestinal, hepatic, and extraintestinal conditions. The field, however, continues to evolve, with a movement toward precision microbiome therapeutics, individualizing care for various disorders. This review will describe the use of fecal microbiota transplantation, microbiota restoration, and precision microbiome therapeutics, focusing on gastrointestinal and hepatic diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1053/j.gastro.2024.05.004DOI Listing

Publication Analysis

Top Keywords

microbiome therapeutics
12
fecal microbiota
8
microbiota transplantation
8
gastrointestinal hepatic
8
precision microbiome
8
progression microbiome
4
therapeutics management
4
gastrointestinal
4
management gastrointestinal
4
gastrointestinal diseases
4

Similar Publications

Fecal microbiota transplantation in severe pneumonia: a case report on overcoming pan-drug resistant infection.

Front Med (Lausanne)

December 2024

Department of Respiratory and Critical Care Medicine, Fuzong Clinical Medical College of Fujian Medical University, Dongfang Hospital of Xiamen University, The 900th Hospital of Joint Logistics Support Force, Fuzhou, China.

Objective: To evaluate the therapeutic potential of fecal microbiota transplantation (FMT) in treating severe pneumonia patients with concurrent pan-drug resistant infection.

Methods: A case report of a 95-year-old female patient with severe pneumonia, complicated by pan-resistant bacterial infections, is presented. The patient was diagnosed with severe pneumonia caused by COVID-19, along with co-infections of , , , , ESBL-producing pan-drug resistant and pan-resistant .

View Article and Find Full Text PDF

() is a Gram-negative, obligate anaerobic, commensal bacterium residing in the human gut and holds therapeutic potential for ulcerative colitis (UC). Previous studies have indicated that capsular polysaccharide A (PSA) of is a crucial component for its effectiveness, possessing various biological activities such as anti-inflammatory, anti-tumor, and immune-modulating effects. We previously isolated and characterized the strain ZY-312 from the feces of a healthy breastfed infant, and extracted its PSA, named TP2.

View Article and Find Full Text PDF

This review synthesizes key findings from the past five years of experimental literature, elucidating the gut microbiome's significant influence on the pathogenesis of thyroid diseases. A pronounced shift in the gut microbiota composition has been consistently observed, with a significant reduction in bacteria such as , , , and , and a notable increase in bacteria, including , , , , and . These alterations are implicated in the development and progression of thyroid diseases by impacting metabolic pathways including bile acid and cytokine production, including a decrease in short-chain fatty acids (SCFAs) that are crucial for immune regulation and thyroid hormone homeostasis.

View Article and Find Full Text PDF

Asthma is a prevalent chronic inflammatory disorder of the respiratory tract that not only manifests with respiratory symptoms but also often involves intestinal flora disorders and gastrointestinal dysfunction. Recent studies have confirmed the close relationship between the gut and lungs, known as the "gut-lung axis" theory. Fecal microbiota transplantation (FMT), a method for restoring normal intestinal flora, has shown promise in treating common gastrointestinal diseases.

View Article and Find Full Text PDF

Droplet microfluidics: unveiling the hidden complexity of the human microbiome.

Lab Chip

January 2025

State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.

The human body harbors diverse microbial communities essential for maintaining health and influencing disease processes. Droplet microfluidics, a precise and high-throughput platform for manipulating microscale droplets, has become vital in advancing microbiome research. This review introduces the foundational principles of droplet microfluidics, its operational capabilities, and wide-ranging applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!