Fucoidan-hybrid hydroxyapatite nanoparticles promote the osteogenic differentiation of human periodontal ligament stem cells under inflammatory condition.

Int J Biol Macromol

Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266023, China. Electronic address:

Published: June 2024

AI Article Synopsis

  • Inflammation can hinder bone healing, so reducing inflammation and promoting stem cell differentiation is essential for bone health.
  • Scientists developed a hybrid nano-hydroxyapatite (FC/n-HA) using fucoidan, which has anti-inflammatory properties, leading to enhanced cell compatibility and improved dispersion.
  • In lab tests, FC/n-HA significantly reduced inflammation markers and increased osteogenic indicators in stem cells, showing promise for treating bone defects related to inflammation, such as periodontitis.

Article Abstract

Inflammation-related bone defects often lead to poor osteogenesis. Therefore, it is crucial to reduce the inflammation response and promote the osteogenic differentiation of stem/progenitor cells to revitalize bone physiology. Here, a kind of hybrid nano-hydroxyapatite was prepared using the confined phosphate ion release method with the participation of fucoidan, a marine-sourced polysaccharide with anti-inflammation property. The physicochemical analyses confirmed that the fucoidan hybrid nano-hydroxyapatite (FC/n-HA) showed fine needle-like architectures. With a higher amount of fucoidan, the crystal size and crystallinity of the FC/n-HA reduced while the liquid dispersibility was improved. Cell experiences showed that FC/n-HA had an optimal cytocompatibility at concentration of 50 μg/mL. Moreover, the lipopolysaccharide-induced cellular inflammatory model with PDLSCs was established and used to evaluate the anti-inflammatory and osteogenic properties. For the 1%FC/n-HA group, the expression levels of TNF-α and IL-1β were significantly reduced at 24 h, while the expression of alkaline phosphatase of PDLSCs was significantly promoted at days 3 and 7, and calcium precipitates was enhanced at 21 days. In this study, the FC/n-HA particles showed effective anti-inflammatory properties and facilitated osteogenic differentiation of PDLSCs, indicating which has potential application in treating bone defects associated with inflammation, such as periodontitis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.132416DOI Listing

Publication Analysis

Top Keywords

osteogenic differentiation
12
promote osteogenic
8
bone defects
8
hybrid nano-hydroxyapatite
8
fucoidan-hybrid hydroxyapatite
4
hydroxyapatite nanoparticles
4
nanoparticles promote
4
osteogenic
4
differentiation human
4
human periodontal
4

Similar Publications

Background: Glucocorticoid (GC) overuse is the main cause of osteonecrosis of the femoral head (ONFH). The dysfunction of bone marrow mesenchymal stem cells (BMSCs) plays an important role in ONFH pathogenesis. Physiological concentrations of GCs can induce the osteogenic differentiation of BMSCs; however, intervention with high concentrations of GC may lead to changes in aging and autophagy in certain cell types.

View Article and Find Full Text PDF

Vascularized bone tissue engineering for osteogenesis is considered a key approach for the repair of critical bone defects. Icariin(ICA) has been employed in bone tissue engineering for osteogenesis in several studies, demonstrating significant angiogenic and osteogenic effects in vivo in rat models. However, the in vivo angiogenic and osteogenic effects of Icariside II (ICSII), a gastrointestinal metabolite of ICA, remain unclear.

View Article and Find Full Text PDF

Cyclic mechanical stress promotes osteogenic differentiation of periodontal ligament stem cells via KAT2A-mediated succinylation of WDR5.

Tissue Cell

March 2025

Department of Orthodontics, Tai 'an Stomatological Hospital, No.261, Lingshan Street, Taishan District, Tai 'an, Shandong 271000, China.

Orthodontics promotes tooth movement and periodontal reconstruction by regulating osteogenic differentiation and osteoclast resorption. This study aimed to investigate the effect of orthodontic force during orthodontics on osteogenesis of periodontal ligament stem cells (PDLSCs) and the underlying mechanism. Cyclic mechanical stress was applied on PDLSCs, and osteogenic differentiation was analyzed using quantitative real-time polymerase chain reaction, immunoblotting, alkaline phosphatase (ALP) staining, and ALP activity determination.

View Article and Find Full Text PDF

Lactoferrin (LF) and epigallocatechin gallate (EGCG) are recognized for their potent osteogenic properties. However, the osteogenic activity of LF-EGCG complexes is not fully understood. In this study, both non-covalent and covalent LF-EGCG complexes with different LF : EGCG ratios were prepared, and their effects on the LF structure and thermal stability were investigated using circular dichroism, Fourier transform infrared spectroscopy, fluorescence spectroscopy, Raman spectroscopy, and differential scanning calorimetry.

View Article and Find Full Text PDF

Age-related alterations in the skeletal system are linked to decreased bone mass, a reduction in bone strength and density, and an increased risk of fractures and osteoporosis. Therapeutics are desired to stimulate bone regeneration and restore imbalance in the bone remodeling process. Quercetin (Qu), a naturally occurring flavonoid, induces osteogenesis; however, its solubility, stability, and bioavailability limit its therapeutic use.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!