The emergence of chemoresistance poses a significant challenge to the efficacy of DNA-damaging agents in cancer treatment, in part due to the inherent DNA repair capabilities of cancer cells. The Ku70/80 protein complex (Ku) plays a central role in double-strand breaks (DSBs) repair through the classical non-homologous end joining (c-NHEJ) pathway, and has proven to be one of the most promising drug target for cancer treatment when combined with radiotherapy or chemotherapy. In this study, we conducted a high-throughput screening of small-molecule inhibitors targeting the Ku complex by using a fluorescence polarization-based DNA binding assay. From a library of 11,745 small molecules, UMI-77 was identified as a potent Ku inhibitor, with an IC value of 2.3 μM. Surface plasmon resonance and molecular docking analyses revealed that UMI-77 directly bound the inner side of Ku ring, thereby disrupting Ku binding with DNA. In addition, UMI-77 also displayed potent inhibition against MUS81-EME1, a key player in homologous recombination (HR), demonstrating its potential for blocking both NHEJ- and HR-mediated DSB repair pathways. Further cell-based studies showed that UMI-77 could impair bleomycin-induced DNA damage repair, and significantly sensitized multiple cancer cell lines to the DNA-damaging agents. Finally, in a mouse xenograft tumor model, UMI-77 significantly enhanced the chemotherapeutic efficacy of etoposide with little adverse physiological effects. Our work offers a new avenue to combat chemoresistance in cancer treatment, and suggests that UMI-77 could be further developed as a promising candidate in cancer treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2024.176647DOI Listing

Publication Analysis

Top Keywords

cancer treatment
16
cancer cells
8
dna-damaging agents
8
cancer
7
umi-77
6
dna
5
discovery umi-77
4
umi-77 novel
4
novel ku70/80
4
ku70/80 inhibitor
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!