Trait-based insights into sustainable fisheries: A four-decade perspective in Azores archipelago.

Sci Total Environ

OKEANOS - Institute of Marine Sciences - OKEANOS, University of the Azores, Rua Professor Doutor Frederico Machado 4, 9901-862 Horta, Portugal; IMAR - Instituto do Mar, University of the Azores, Rua Professor Doutor Frederico Machado 4, 9901-862 Horta, Portugal.

Published: July 2024

The trait-based approach provides a powerful perspective for analyzing fisheries and their potential impact on marine ecological processes, offering crucial insights into sustainability and ecosystem functioning. This approach was applied to investigate trends in fish assemblages landed by both local and coastal fishing fleets in the Azores archipelago over the past four decades (1980s, 1990s, 2000s, and 2010s). A matrix of ten traits was built to assess functional redundancy (Fred), functional over-redundancy (FOve), and functional vulnerability (FVul) for the fish assemblages caught by every fishing fleet in each decade. The susceptibility of the Azorean fishery to negative impacts on ecosystem functioning was evidenced by low FRed (<1.5 species per functional entity) and high FVul (exceeding 70 %). However, there is reason for optimism, as temporal trends in the 2000s and 2010s showed an increase in FRed and FOve along with a significant decrease in FVul. These trends indicate the adaptation of the fishery to new target species and, notably, the effectiveness of local fish regulations in mitigating the impacts of targeting functionally important species, such as Elasmobranchii, over the past two decades. These regulations have played a pivotal role in preserving ecological functions within the ecosystem, as well as in managing the removal of high biomass of key important species (e.g., Trachurus picturatus, Pagellus bogaraveo, and Katsuwonus pelamis) from the ecosystem. This study contributes to understanding the delicate balance between fishing pressure, ecological resilience, and sustainable resource management in Azorean waters. It also highlights the importance of continued monitoring, adaptive management, and the enforcement of local fishing regulations to ensure the long-term health and sustainability of the fishery and the broader marine ecosystem.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.173271DOI Listing

Publication Analysis

Top Keywords

azores archipelago
8
ecosystem functioning
8
fish assemblages
8
trait-based insights
4
insights sustainable
4
sustainable fisheries
4
fisheries four-decade
4
four-decade perspective
4
perspective azores
4
archipelago trait-based
4

Similar Publications

Long-term monitoring data on (Newman, 1838) (Coleoptera, Rutelidae) across the Azorean Islands.

Biodivers Data J

December 2024

University of the Azores, Biotechnology Centre of Azores (CBA), Faculty of Sciences and Technology, PT-9500-321, Ponta Delgada, Azores, Portugal University of the Azores, Biotechnology Centre of Azores (CBA), Faculty of Sciences and Technology, PT-9500-321 Ponta Delgada, Azores Portugal.

Background: The Japanese Beetle, Newman, 1838 (Coleoptera, Rutelidae), is a univoltine agricultural pest that poses a serious threat to various agricultural crops. For more than 16 years, the Azorean official authorities have implemented a Long-Term Ecological Research (LTER) programme that is crucial for understanding the dynamics of insect pests, such as the Japanese Beetle, and their impacts on agricultural ecosystems. The significance of this long-term monitoring extends beyond understanding the pest's life cycle.

View Article and Find Full Text PDF

Plastics reset in an adult Procellariform seabird species during the breeding season.

Mar Environ Res

December 2024

Instituto de Investigação em Ciências do Mar - OKEANOS, Universidade dos Açores, HORTA, 9900-138, Portugal.

Plastic ingestion has been extensively studied in seabirds. However, knowledge gaps remain in understanding how plastic loads behave over time and their residence inside Procellariforms. This study investigated the temporal dynamics of ingested plastics by adult Cory's shearwaters (Calonectris borealis) during the breeding season to shed light on plastic retention times.

View Article and Find Full Text PDF

Background: Corvo is a small and remote island in the western group of the Azores Archipelago, Portugal. The Island's lichen biodiversity was largely understudied, with only 17 species documented to date.

New Information: This study reports 68 new records of lichen species on Corvo Island, representing an addition of two classes, eight orders, 18 families and 43 genera.

View Article and Find Full Text PDF

Valorization of azorean demersal fish species must focus quality. This study aims to assess the nutritional value, sodium content and fat quality index of seven commercially relevant demersal fish species from the Azores Region: blackspot seabream (), blackbelly rosefish (), splendid alfonsino (), alfonsino (), forkbeard (), offshore rockfish () and common mora (). Moisture, ash, crude protein, total sugars, total fat, fatty acid profile, sodium and salt content were assessed.

View Article and Find Full Text PDF

A pioneering longterm experiment on mesophotic macrofouling communities in the North Atlantic.

Commun Biol

December 2024

MARE - Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Madeira, Portugal.

The mesophotic zone represents one of our planet's largest and least explored biomes. An increasing number of studies evidence the importance of macrofouling species in marine ecosystems, but information on these communities and the factors influencing their structures at mesophotic depths remain poor. This lack of understanding limits our ability to predict anthropogenic impacts or conduct restoration operations in the mesophotic and the lower boundary of the euphotic zones.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!