Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Prefiltration before chromatographic analysis is critical in the monitoring of environmental micropollutants (MPs). However, in an aqueous matrix, such monitoring often leads to out-of-specification results owing to the loss of MPs on syringe filters. Therefore, this study investigated the loss of seventy MPs on eight different syringe filters by employing Random Forest, a machine learning algorithm. The results indicate that the loss of MPs during filtration is filter specific, with glass microfiber and polytetrafluoroethylene filters being the most effective (<20%) compared with nylon (>90%) and others (regenerated-cellulose, polyethersulfone, polyvinylidene difluoride, cellulose acetate, and polypropylene). The Random Forest classifier showed outstanding performance (accuracy range 0.81-0.95) for determining whether the loss of MPs on filters exceeded 20%. Important factors in this classification were analyzed using the SHapley Additive exPlanation value and Kruskal-Wallis test. The results show that the physicochemical properties (LogKow/LogD, pKa, functional groups, and charges) of MPs are more important than the operational parameters (sample volume, filter pore size, diameter, and flow rate) in determining the loss of most MPs on syringe filters. However, other important factors such as the implications of the roles of pH for nylon and pre-rinsing for PTFE syringe filters should not be ignored. Overall, this study provides a systematic framework for understanding the behavior of various MP classes and their potential losses on syringe filters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.142327 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!