A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sleep assessment using EEG-based wearables - A systematic review. | LitMetric

Sleep assessment using EEG-based wearables - A systematic review.

Sleep Med Rev

Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Department Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology and Metabolism (AGEM), Amsterdam, the Netherlands.

Published: August 2024

Polysomnography (PSG) is the reference standard of sleep measurement, but is burdensome for the participant and labor intensive. Affordable electroencephalography (EEG)-based wearables are easy to use and are gaining popularity, yet selecting the most suitable device is a challenge for clinicians and researchers. In this systematic review, we aim to provide a comprehensive overview of available EEG-based wearables to measure human sleep. For each wearable, an overview will be provided regarding validated population and reported measurement properties. A systematic search was conducted in the databases OVID MEDLINE, Embase.com and CINAHL. A machine learning algorithm (ASReview) was utilized to screen titles and abstracts for eligibility. In total, 60 papers were selected, covering 34 unique EEG-based wearables. Feasibility studies indicated good tolerance, high compliance, and success rates. The 42 included validation studies were conducted across diverse populations and showed consistently high accuracy in sleep staging detection. Therefore, the recent advancements in EEG-based wearables show great promise as alternative for PSG and for at-home sleep monitoring. Users should consider factors like user-friendliness, comfort, and costs, as these devices vary in features and pricing, impacting their suitability for individual needs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.smrv.2024.101951DOI Listing

Publication Analysis

Top Keywords

eeg-based wearables
20
systematic review
8
sleep
5
eeg-based
5
wearables
5
sleep assessment
4
assessment eeg-based
4
wearables systematic
4
review polysomnography
4
polysomnography psg
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!