Rational construction of efficient bifunctional catalysts with robust catalytic activity and durability is significant for overall water splitting (conversion between water and hydrogen fuel/oxygen) using non-precious metal systems. In this work, the hierarchically porous N, P, O-doped transition metal phosphate in the Ni foam (NF) electrode (hollow flower-like NPO/NiP@NF) was prepared through facile hydrothermal method coupled with phosphorization treatment. The hierarchical hollow flower-like NPO/NiP@NF electrodes exhibited high bifunctional activity and stability for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline solutions. The optimized electrode showed low overpotentials of 76 and 240 mV for HER and OER to reach a current density of 10 mA cm, respectively. Notably, the NPO/NiP@NF electrode only required a low voltage of 1.99 V to reach the current densities of 100 mA cm with long-term stability for overall water splitting using the NPO/NiP@NF|| NPO/NiP@NF cell, surpassing that of the Pt/C-RuO (2.24 V@ 100 mA cm). The good catalytic and battery performance should be attributed to i) the open hierarchical structure that enhanced the mass transfer; ii) a highly conductive substrate that accelerated the electron transfer; iii) the rich heterojunction and strong synergy between NiP and NiP that improved the catalytic kinetic; iv) the proper-thickness amorphous phosphorus oxide nitride (PON) shell that realized the stability. This work demonstrates a promising methodology for designing bifunctional transition metal phosphides with high performance for efficient water splitting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2024.04.168 | DOI Listing |
Nanoscale
January 2025
Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing, 401331, PR China.
The development of environmentally friendly, high-efficiency, stable, earth-abundant and non-precious metal-based electrocatalysts with fast kinetics and low overpotential for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is of exceeding significance but still challenging. Herein, a bifunctional electrode of unique hierarchical NiFe-LDH/Ni/NiCoS/NF (NiFe-LDH = nickel-iron layered double hydroxide and NF = nickel foam) electrocatalytic architecture, which is built up from NiFe-LDH nanosheets, Ni nanoparticles and NiCoS nanoneedles sequentially arrayed on a porous NF substrate, has been prepared by a facile hydrothermal and electrodeposition method. This electrocatalytic architecture is binder-free and its outer NiFe-LDH nanosheets can effectively prevent the oxidation of inner Ni nanoparticles and corrosion of NiCoS nanoneedles during water electrolysis.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China.
An OER catalyst showing both high activity and stability in promoting oxygen evolution is important for its practical application in electrochemical water-splitting. Here, we report the screening of such a catalyst by optimizing the Ni(II)-doping in Co(III)-based layered double hydroxides (LDHs). Such LDH samples tailored with Ni(II)-doping are prepared by an oxidative intercalation reaction where brucite-like Ni(II)Co(II)(OH) (0 ≤ ≤ 0.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore.
Electrochemical water splitting is a promising method for generating green hydrogen gas, offering a sustainable approach to addressing global energy challenges. However, the sluggish kinetics of the anodic oxygen evolution reaction (OER) poses a great obstacle to its practical application. Recently, increasing attention has been focused on introducing various external stimuli to modify the OER process.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea.
The advancement of highly efficient and cost-effective electrocatalysts for electrochemical water splitting, along with the development of triboelectric nanogenerators (TENGs), is crucial for sustainable energy generation and harvesting. In this study, a novel hybrid composite by integrating graphitic carbon nitride (GCN) with an earth-abundant FeMg-layered double hydroxide (LDH) (GCN@FeMg-LDH) was synthesized by the hydrothermal approach. Under controlled conditions, with optimized concentrations of metal ions and GCN, the fabricated electrode, GCN@FeMg-LDH demonstrated remarkably low overpotentials of 0.
View Article and Find Full Text PDFInorg Chem
January 2025
Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China.
Efficient and stable nonprecious metal-based oxygen evolution reaction (OER) electrocatalysts are pivotal for water electrolysis technology. Herein, we are reporting an effective strategy for fabricating efficient Co-based OER electrocatalysts by low-level Fe doping in CoMoO to boost surface reconstruction and electronic modulation, which resulted in excellent OER electroactivity consequently. Our findings reveal that a mere 5.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!