Introduction: During the COVID-19 pandemic, ventilator shortages necessitated the development of new, low-cost ventilator designs. The fundamental requirements of a ventilator include precise gas delivery, rapid adjustments, durability, and user-friendliness, often achieved through solenoid valves. However, few solenoid-valve assisted low-cost ventilator (LCV) designs have been published, and gas exchange evaluation during LCV testing is lacking. This study describes the development and performance evaluation of a solenoid-valve assisted low-cost ventilator (SV-LCV) in vitro and in vivo, focusing on gas exchange and respiratory mechanics.
Methods: The SV-LCV, a fully open ventilator device, was developed with comprehensive hardware and design documentation, utilizing solenoid valves for gas delivery regulation. Lung simulator testing calibrated tidal volumes at specified inspiratory and expiratory times, followed by in vivo testing in a porcine model to compare SV-LCV performance with a conventional ventilator.
Results: The SV-LCV closely matched the control ventilator's respiratory profile and gas exchange across all test cycles. Lung simulator testing revealed direct effects of compliance and resistance changes on peak pressures and tidal volumes, with no significant changes in respiratory rate. In vivo testing demonstrated comparable gas exchange parameters between SV-LCV and conventional ventilator across all cycles. Specifically, in cycle 1, the SV-LCV showed arterial blood gas (ABG) results of pH 7.54, PCO2 34.5 mmHg, and PO2 91.7 mmHg, compared to the control ventilator's ABG of pH 7.53, PCO2 37.1 mmHg, and PO2 134 mmHg. Cycle 2 exhibited ABG results of pH 7.53, PCO2 33.6 mmHg, and PO2 84.3 mmHg for SV-LCV, and pH 7.5, PCO2 34.2 mmHg, and PO2 93.5 mmHg for the control ventilator. Similarly, cycle 3 showed ABG results of pH 7.53, PCO2 32.1 mmHg, and PO2 127 mmHg for SV-LCV, and pH 7.5, PCO2 35.5 mmHg, and PO2 91.3 mmHg for the control ventilator.
Conclusion: The SV-LCV provides similar gas exchange and respiratory mechanic profiles compared to a conventional ventilator. With a streamlined design and performance akin to commercially available ventilators, the SV-LCV presents a viable, readily available, and reliable short-term solution for overcoming ventilator supply shortages during crises.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11098403 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0303443 | PLOS |
Environ Sci Pollut Res Int
January 2025
Lomonosov Moscow State University, Moscow, Russia.
On October 11, 2018, in the Ulytau region of the Republic of Kazakhstan, the Soyuz-FG launch vehicle carrying a crewed MS-10 spacecraft failed. It resulted in the release into the fragile arid ecosystems of rocket propellants, i.e.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Botany, Lahore College for Women University, Lahore, Pakistan.
The present study was designed to highlight the ameliorative role of iron nanoparticles (FeNPs) against drought stress in spinach (Spinacia oleracea L.) plants. A pot experiment was performed in two-way completely randomize design with three replicates.
View Article and Find Full Text PDFPediatr Crit Care Med
January 2025
Paediatric Intensive Care Unit, Great Ormond Street Hospital for Children NHS Foundation Trust and NIHR Biomedical Research Centre, London, United Kingdom.
Objectives: A conservative oxygenation strategy is recommended in adult and pediatric guidelines for the management of acute respiratory distress syndrome to reduce iatrogenic lung damage. In the recently reported Oxy-PICU trial, targeting peripheral oxygen saturations (Spo2) between 88% and 92% was associated with a shorter duration of organ support and greater survival, compared with Spo2 greater than 94%, in mechanically ventilated children following unplanned admission to PICU. We investigated whether this benefit was greater in those who had severely impaired oxygenation at randomization.
View Article and Find Full Text PDFNano Lett
January 2025
Interdisciplinary Graduate Program in Materials Science, Vanderbilt University, Nashville, Tennessee 37235, United States.
Permeance-selectivity trade-offs are inherent to polymeric membranes. In fuel cells, thinner proton exchange membranes (PEMs) could enable higher proton conductance and increased power density with lower area-specific resistance (ASR), smaller ohmic losses, and lower ionomer cost. However, reducing thickness is accompanied by an increase in undesired species crossover harming performance and long-term efficiency.
View Article and Find Full Text PDFEES Catal
December 2024
Department of Chemical Engineering, Delft University of Technology 2629 HZ Delft The Netherlands
Electrochemical CO reduction offers a promising method of converting renewable electrical energy into valuable hydrocarbon compounds vital to hard-to-abate sectors. Significant progress has been made on the lab scale, but scale-up demonstrations remain limited. Because of the low energy efficiency of CO reduction, we suspect that significant thermal gradients may develop in industrially relevant dimensions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!