Capturing human locomotion in nearly any environment or context is becoming increasingly feasible with wearable sensors, giving access to commonly encountered walking conditions. While important in expanding our understanding of locomotor biomechanics, these more variable environments present challenges to identify changes in data due to person-level factors among the varying environment-level factors. Our study examined foot-specific biomechanics while walking on terrain commonly encountered with the goal of understanding the extent to which these variables change due to terrain. We recruited healthy adults to walk at self-selected speeds on stairs, flat ground, and both shallow and steep sloped terrain. A pair of inertial measurement units were embedded in both shoes to capture foot biomechanics while walking. Foot orientation was calculated using a strapdown procedure and foot trajectory was determined by double integrating the linear acceleration. Stance time, swing time, cadence, sagittal and frontal orientations, stride length and width were extracted as discrete variables. These data were compared within-participant and across terrain conditions. The physical constraints of the stairs resulted in shorter stride lengths, less time spent in swing, toe-first foot contact, and higher variability during stair ascent specifically (p<0.05). Stride lengths increased when ascending compared to descending slopes, and the sagittal foot angle at initial contact was greatest in the steep slope descent condition (p<0.05). No differences were found between conditions for horizontal foot angle in midstance (p≥0.067). Our results show that walking on slopes creates differential changes in foot biomechanics depending on whether one is descending or ascending, and stairs require different biomechanics and gait timing than slopes or flat ground. This may be an important factor to consider when making comparisons of real-world walking bouts, as greater proportions of one terrain feature in a data set could create bias in the outcomes. Classifying terrain in unsupervised walking datasets would be helpful to avoid comparing metrics from different walking terrain scenarios.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11098422PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0293691PLOS

Publication Analysis

Top Keywords

foot orientation
8
commonly encountered
8
biomechanics walking
8
foot
5
terrain
5
orientation trajectory
4
trajectory variability
4
variability locomotion
4
locomotion effects
4
effects real-world
4

Similar Publications

The orientation and rear legs have different roles in the spike jump (SPJ) in volleyball, yet the relationship between the jump height and kinetics of each leg remains underexplored. We aimed to clarify the relationships between jump height and kinetics of the orientation and rear legs in the SPJ. This study included 18 female college volleyball players.

View Article and Find Full Text PDF

Not all corals are attached to the substrate; some taxa are solitary and free-living, allowing them to migrate into preferred habitats. However, the lifestyle of these mobile corals, including how they move and navigate for migration, remains largely obscure. This study investigates the specific biomechanics of Cycloseris cyclolites, a free-living coral species, during phototactic behaviour in response to blue and white light stimuli.

View Article and Find Full Text PDF

Enhanced pullulanase production through expression system optimization and biofilm-immobilized fermentation strategies.

Int J Biol Macromol

January 2025

National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Soochow University, Suzhou, Jiangsu 215123, PR China.

Pullulanase (PUL) plays a crucial role in breaking down α-1,6-glycosidic bonds in starch, a key process in starch processing and conversion. Based on PulB with high enzymatic activity, the expression of PUL in Bacillus subtilis was enhanced by plasmid screening, double promoter optimization, and signal peptide engineering. Furthermore, we innovatively employed a mussel foot protein to enhance the cell adhesion to carriers and utilized biofilm-based cell immobilization technology to optimize the fermentation process and stimulate biofilm formation.

View Article and Find Full Text PDF

Efficient production of recombinant hybrid mussel proteins with improved adhesion.

Int J Biol Macromol

January 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China. Electronic address:

Mussel foot proteins (mfps) play important roles in surface interaction and underwater adhesion. However, limited production and the lack of adhesion of recombinant mfps have restricted their widespread use. Here, we present a general strategy for enhancing both the expression and function of mfps by connecting multiple protein fragments.

View Article and Find Full Text PDF

For over a century researchers have marveled at the square-shaped toe tips of several species of climbing salamanders (genus Aneides), speculating about the function of large blood sinuses therein. Wandering salamanders (Aneides vagrans) have been reported to exhibit exquisite locomotor control while climbing, jumping, and gliding high (88 m) within the redwood canopy; however, a detailed investigation of their digital vascular system has yet to be conducted. Here, we describe the vascular and osteological structure of, and blood circulation through, the distal regions of the toes of A.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!