When conducting in situ experiments at high temperatures in a scanning electron microscope using microfurnaces, controlling the temperature of a sample of a few mm3 placed in the hot zone of the furnace can be a complex task. In most cases, the temperature of the sample is estimated by means of a thermocouple placed in the hot body of the furnace, and the assumption made is that the temperature of the furnace is the temperature of the sample. In this work, a detailed understanding of the thermal response of the sample placed in the hot zone of the furnace is proposed. Temperature differences due to contact resistance between the furnace surface and the sample, the nature of the sample, and the sample geometry are calculated with a numerical model and measured experimentally on a dedicated test bench. Three technical solutions (bonding, sandwiching, and mini-crucible) for limiting temperature differences between the furnace surface and sample are proposed and validated by numerical calculations and experimental measurements.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0207475DOI Listing

Publication Analysis

Top Keywords

temperature sample
12
scanning electron
8
electron microscope
8
thermal response
8
sample
8
hot zone
8
zone furnace
8
temperature differences
8
furnace surface
8
surface sample
8

Similar Publications

Scale-Up of Nanocorundum Synthesis by Mechanochemical Dehydration of Boehmite.

Ind Eng Chem Res

January 2025

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany.

This work presents the scale-up of room-temperature mechanochemical synthesis of nanocorundum (high-surface-area α-AlO) from boehmite (γ-AlOOH). This transformation on the 1 g scale using a laboratory shaker mill had previously been reported. High-energy Simoloyer ball mills equipped with milling chambers of sizes ranging from 1 to 20 L were used to scale up the mechanochemical nanocorundum synthesis to the 50 g to 1 kg scale, which paves the way to further increase batch size.

View Article and Find Full Text PDF

Recycling of Post-Consumer Waste Polystyrene Using Commercial Plastic Additives.

ACS Cent Sci

January 2025

Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.

Photothermal conversion can promote plastic depolymerization (chemical recycling to a monomer) through light-to-heat conversion. The highly localized temperature gradient near the photothermal agent surface allows selective heating with spatial control not observed with bulk pyrolysis. However, identifying and incorporating practical photothermal agents into plastics for end-of-life depolymerization have not been realized.

View Article and Find Full Text PDF

Anthropogenic influences have drastically increased nutrient concentrations in many estuaries globally, and microbial communities have adapted to the resulting hypereutrophic ecosystems. However, our knowledge of the dominant microbial taxa and their potential functions in these ecosystems has remained sparse. Here, we study prokaryotic community dynamics in a temporal-spatial dataset, from a subtropical hypereutrophic estuary.

View Article and Find Full Text PDF

Chemical polymerization/oligomerization opens numerous opportunities, from fundamental materials research to practical applications in catalysis, energy, sensing, and medicine. The electrochemical detection of vitamins B (folic acid) and C (ascorbic acid) requires new approaches because of low selectivity, electrode fouling, and interference from other chemicals. As an excellent material for long-term vitamin detection, oligo 3,5-diamino-1,2,4-triazole (oligo DAT) enhances the sensitivity, selectivity, and stability of sensors by creating a stable, conductive layer that facilitates electron transfer and reduces interference from common substances like glucose or uric acid.

View Article and Find Full Text PDF

Essential oils application as natural preservatives is challenging owning to low solubility and stability to harsh conditions, while incorporation of essential oils into nanoemulsion systems can effectively improve these issues. Therefore, the nanoemulsion of () and cardamom essential oils were fabricated through self-emulsification technique and evaluated their size, ζ-potential, antioxidative and antibacterial activities. The effect of double nanomulsion on the textural and sensorial properties of Mortadella sausage was also examined under chilling temperature (4 °C).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!