Cyclodextrins belong to a class of cyclic oligosaccharides composing of α-(1,4) linked glucopyranose subunits having a torus-like macro ring shape. Cyclodextrins based materials find a wide range of applications in separation technology due to their unique property to differentiate between enantiomers, positional isomers and functional groups. Conversely, ionic liquids are the non-molecular compounds composed of different anion and cations with low melting point making them a designer and greener solvents. Because of their fascinating properties, the combined effect of cyclodextrin and ionic liquids as cyclodextrin functionalized ionic liquids (CDILs) have nowadays led to an excellent development for their utilization in the area of analytical chemistry. This review focuses mainly on the synthesis of cyclodextrin functionalized ionic liquids and their application in separation techniques like capillary electrophoresis (CE), high-performance liquid chromatography (HPLC) and gas chromatography (GC). The nature of the interactions between CDILs and analytes have also been highlighted in this review.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10408347.2024.2351815 | DOI Listing |
Pharmaceutics
December 2024
Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane 283-8555, Chiba, Japan.
: Laurocapram (Azone) attracted attention 40 years ago as a compound with the highest skin-penetration-enhancing effect at that time; however, its development was shelved due to strong skin irritation. We had already prepared and tested an ante-enhancer (IL-Azone), an ionic liquid (IL) with a similar structure to Azone, consisting of ε-caprolactam and myristic acid, as an enhancer candidate that maintains the high skin-penetration-enhancing effect of Azone with low skin irritation. In the present study, fatty acids with different carbon numbers (caprylic acid: C8, capric acid: C10, lauric acid: C12, myristic acid: C14, and oleic acid: C18:1) were selected and used with ε-caprolactam to prepare various IL-Azones in the search for a more effective IL-Azone.
View Article and Find Full Text PDFMolecules
January 2025
CNR-STIIMA, Italian National Research Council, Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, 13900 Biella, Italy.
Thanks to their unique physicochemical properties, ionic liquids (ILs) have moved from niche academic interest to critical components in various industrial applications. The textile industry, facing significant environmental and economic pressures, has begun to explore ILs as sustainable alternatives to traditional solvents and chemicals. This review summarizes research on the use of ILs in various textile processes, including dyeing, finishing, and fiber recycling, where their high thermal stability, tunable solubility, and low volatility are exploited to reduce resource consumption and environmental impact.
View Article and Find Full Text PDFMolecules
January 2025
Department of Chemical Engineering, Louisiana Tech University, 600 Dan Reneau Drive, P.O. Box 10348, Ruston, LA 71272, USA.
Adequate water supplies are crucial for missions to the Moon, since water is essential for astronauts' health. Ionic liquids (ILs) have been investigated for processing metal oxides, the main components of lunar regolith, to separate oxygen and metals. The IL must be diluted in the process.
View Article and Find Full Text PDFInorg Chem
January 2025
Center for Hierarchical Waste Form Materials, University of South Carolina, Columbia, South Carolina 29208, United States.
Ionic liquids were used as low temperature solvents for the synthesis of new lanthanide and transuranic-element (TRU) borate cluster structures. Ionothermal synthesis with the ionic liquid [BMIm]Cl (1-butyl-3-methylimidazolium chloride) yielded the La, Nd, and Am containing phases LaBOCl, NdBOCl, and AmBOCl. The structures of the La, Nd, and Am borate clusters were determined by single crystal X-ray diffraction (SCXRD) and found to be cubic, in the chiral space group 23.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China. Electronic address:
Active colloids driven out of thermal equilibrium serve as building blocks for smart materials with tunable structures and functions. Using chemical energy to drive colloids is advantageous but requires precise control over chemical release. To address this, we developed colloidal ionogels-polymer microspheres infused with ionic liquids-that show controlled assembly and self-propulsion upon tunable swelling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!