Black Titania Janus Mesoporous Nanomotor for Enhanced Tumor Penetration and Near-Infrared Light-Triggered Photodynamic Therapy.

ACS Nano

Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China.

Published: May 2024

Thanks to their excellent photoelectric characteristics to generate cytotoxic reactive oxygen species (ROS) under the light-activation process, TiO nanomaterials have shown significant potential in photodynamic therapy (PDT) for solid tumors. Nevertheless, the limited penetration depth of TiO-based photosensitizers and excitation sources (UV/visible light) for PDT remains a formidable challenge when confronted with complex tumor microenvironments (TMEs). Here, we present a HO-driven black TiO mesoporous nanomotor with near-infrared (NIR) light absorption capability and autonomous navigation ability, which effectively enhances solid tumor penetration in NIR light-triggered PDT. The nanomotor was rationally designed and fabricated based on the Janus mesoporous nanostructure, which consists of a NIR light-responsive black TiO nanosphere and an enzyme-modified periodic mesoporous organosilica (PMO) nanorod that wraps around the TiO nanosphere. The overexpressed HO can drive the nanomotor in the TME under catalysis of catalase in the PMO domain. By precisely controlling the ratio of TiO and PMO compartments in the Janus nanostructure, TiO&PMO nanomotors can achieve optimal self-propulsive directionality and velocity, enhancing cellular uptake and facilitating deep tumor penetration. Additionally, by the decomposition of endogenous HO within solid tumors, these nanomotors can continuously supply oxygen to enable highly efficient ROS production under the NIR photocatalysis of black TiO, leading to intensified PDT effects and effective tumor inhibition.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c03652DOI Listing

Publication Analysis

Top Keywords

tumor penetration
12
black tio
12
janus mesoporous
8
mesoporous nanomotor
8
photodynamic therapy
8
solid tumors
8
tio nanosphere
8
tio
6
tumor
5
black
4

Similar Publications

Erlotinib-induced Perioral Lesions Resembling Scleroderma.

Acta Dermatovenerol Croat

November 2024

Constantin A. Dasanu MD, PhD, Lucy Curci Cancer Center, Eisenhower Health, 39000 Bob Hope Dr, Rancho Mirage, CA 92270 , USA;

Erlotinib, an epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), is currently used in the therapy of several solid malignancies. This agent has been associated with several dermatological side-effects, the most common being papulo-pustular acneiform rash. Herein we describe a unique skin effect in a patient treated with erlotinib for non-small cell lung cancer.

View Article and Find Full Text PDF

Skin-on-a-chip models provide physiologically relevant platforms for studying diseases and drug evaluation, replicating the native skin structures and functions more accurately than traditional 2D or simple 3D cultures. However, challenges remain in creating models suitable for microneedling applications and monitoring, as well as developing skin cancer models for analysis and targeted therapy. Here, we developed a human skin/skin cancer-on-a-chip platform within a microfluidic device using bioprinting/bioengineering techniques.

View Article and Find Full Text PDF

Gas bubbles, commonly used in medical ultrasound (US), witness advancements with nanobubbles (NB), providing improved capabilities over microbubbles (MB). NBs offer enhanced penetration into capillaries and the ability to extravasate into tumors following systemic injection, alongside prolonged circulation and persistent acoustic contrast. Low-frequency insonation (<1 MHz) with NBs holds great potential in inducing significant bioeffects, making the monitoring of their acoustic response critical to achieving therapeutic goals.

View Article and Find Full Text PDF

Molecular Engineering of 2', 7'-Dichlorofluorescein to Unlock Efficient Superoxide Anion NIR-II Fluorescent Imaging and Tumor Photothermal Therapy.

Small

January 2025

Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, P. R. China.

Although classical fluorescent dyes feature advantages of high quantum yield, tunable "OFF-ON" fluorescence, and modifiable chemical structures, etc., their bio-applications in deep tissue remains challenging due to their excessively short emission wavelength (that may lead to superficial tissue penetration depth). Therefore, there is a pressing need for pushing the wavelength of classical dyes from visible region to NIR-II window.

View Article and Find Full Text PDF

Dual Strategies Based on Golgi Apparatus/Endoplasmic Reticulum Targeting and Anchoring for High-Efficiency siRNA Delivery and Tumor RNAi Therapy.

ACS Nano

January 2025

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China.

Endolysosomal degradation of small interfering RNA (siRNA) significantly reduces the efficacy of RNA interference (RNAi) delivered by nonviral systems. Leveraging Golgi apparatus/endoplasmic reticulum (Golgi/ER) transport can help siRNA bypass the endolysosomal degradation pathway, but this approach may also result in insufficient siRNA release and an increased risk of Golgi/ER-mediated exocytosis. To address these challenges, we developed two distinct strategies using a nanocomplex of cell-penetrating poly(disulfide)s and chondroitin sulfate, which enhances targeted internalization, Golgi transport, and rapid cytoplasmic release of loaded siRNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!