New particle formation (NPF) is the process by which trace atmospheric acids and bases cluster and grow into particles that ultimately impact climate. Sulfuric acid concentration drives NPF, but nitrogen-containing bases promote the formation of more stable clusters via salt bridge formation. Recent computational efforts have suggested that amino acids can enhance NPF, predicting that they can stabilize new particles via multiple protonation sites, but there has yet to be experimental validation of these predictions. We used mass spectrometry and infrared spectroscopy to study the structure and stability of cationic clusters composed of glycine, sulfuric acid, and ammonia. When collisionally activated, clusters were significantly more likely to eliminate ammonia or sulfuric acid than glycine, while quantum chemical calculations predicted lower binding free energies for ammonia but similar binding free energies for glycine and sulfuric acid. These calculations predicted several low-energy structures, so we compared experimental and computed vibrational spectra to attempt to validate the computationally predicted minimum energy structure. Unambiguous identification of the experimental structure by comparison to these calculations was made difficult by the complexity of the experimental spectra and the fact that the identity of the computed lowest-energy structure depended strongly on temperature. If their vapors are present, amino acids are likely to be enriched in new particles by displacing more weakly bound ammonia, similar to the behavior of other atmospheric amines. The carboxylic acid groups were found to preferentially interact with other carboxylic acids, suggesting incipient organic/inorganic phase separation even at these small sizes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.4c01629DOI Listing

Publication Analysis

Top Keywords

sulfuric acid
16
amino acids
8
glycine sulfuric
8
calculations predicted
8
binding free
8
free energies
8
acid
5
stability structure
4
structure atmospherically
4
atmospherically relevant
4

Similar Publications

Background: Although gut-derived uremic toxins are increased in azotemic chronic kidney disease (CKD) in cats and implicated in disease progression, it remains unclear if augmented formation or retention of these toxins is associated with the development of renal azotemia.

Objectives: Assess the association between gut-derived toxins (ie, indoxyl-sulfate, p-cresyl-sulfate, and trimethylamine-N-oxide [TMAO]) and the onset of azotemic CKD in cats.

Animals: Forty-eight client-owned cats.

View Article and Find Full Text PDF

This study investigates the synthesis of corn starch nanocrystals (SNCs) via sulfuric acid hydrolysis. Esterification of oleic acid (OA) with SNCs was carried out using Maghnite-H as a catalyst, a non-polluting, eco-friendly proton-exchanged montmorillonite-based green catalyst suitable for various chemical processes. Optimization of synthesis parameters, including reaction temperature, duration, and catalyst quantity, was conducted using response surface methodology (RSM) with a central composite design incorporating three factors and three levels.

View Article and Find Full Text PDF

Optimization of pyrite cinder strengthening continuous acid decomposition of ilmenite by response surface methodology.

Sci Rep

December 2024

State Key Testing Laboratory of Vanadium & Titanium, Vanadium and Titanium Resource Comprehensive Utilization Key Laboratory of Sichuan Province, Panzhihua University, Panzhihua, 617000, Sichuan, People's Republic of China.

Pyrite cinder could release more heat to improve he acid decomposition reaction of ilmenite, lower concentrations of sulfuric acid, increase the amount of TiO waste acid reused, reduce titanium gypsum emissions, and promote the green and sustainable development of TiO. Using pyrite cinder as strengthening activator, the continuous acid decomposition conditions for ilmenite were optimized by using response surface methodology based on Box-Behnken design method. The acid decomposition conditions such as acid ilmenite ratio, acid concentration and pyrite cinder dosage mainly affected the reaction temperature, reaction equilibrium, reaction velocity, volatilization degree of water and sulfuric acid, ultimately affecting the solidification degree of the products and reaction yields.

View Article and Find Full Text PDF

Geopolymer concrete (GPC) offers a sustainable alternative by eliminating the need for cement, thereby reducing carbon dioxide emissions. Using durable concrete helps prevent the corrosion of reinforcing bars and reduces spalling caused by chemical attacks. This study investigates the impact of adding 5, 10, and 15% silica fumes (SF) on the mechanical and durability properties of GPC cured at 60 °C for 24 h.

View Article and Find Full Text PDF

Differential effects of fine particulate matter constituents on acute coronary syndrome onset.

Nat Commun

December 2024

School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, China.

Fine particulate matter has been linked with acute coronary syndrome. Nevertheless, the key constituents remain unclear. Here, we conduct a nationwide case-crossover study in China during 2015-2021 to quantify the associations between fine particulate matter constituents (organic matter, black carbon, nitrate, sulfate, and ammonium) and acute coronary syndrome, and to identify the critical contributors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!