An advanced design of the analytical ultracentrifuge with multiwavelength emission detection (MWE-AUC) is presented which offers outstanding performance concerning the spectral resolution and range flexibility as well as the quality of the data acquired. The excitation by a 520 nm laser is complemented with a 405 nm laser. An external spectrograph with three switchable tunable gratings permits optimisation of the spectral resolution in an order of magnitude range while keeping the spectral region broad. The new system design leads also to a significant reduction of systematic signal noise and allows the assessment and control of inner filter effects. Details regarding the very large signal dynamic range are presented, an important aspect when studying samples in a broad concentration range of up to five orders of magnitude. Our system is validated by complementary studies on two biological systems, fluorescent BSA and GFP, using the commercial Optima AUC with absorbance detection for comparison. Finally, we demonstrate the capabilities of our second generation MWE-AUC with respect to multiwavelength characterisation of gold nanoclusters, which exhibit specific fluorescence depending on their structure. Overall, this work depicts an important stepping stone for the concept of multiwavelength emission detection in AUC. The MWE-AUC developed, being to our knowledge the first and sole one of its kind, has reached the development level suitable for the future in-depth studies of size-, shape- and composition-dependent emission properties of colloids.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11093262 | PMC |
http://dx.doi.org/10.1039/d3na00980g | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
December 2024
School of Applied Chemistry and Materials, Zhuhai College of Science and Technology, No. 8 Anji East Road, Zhuhai 519040, China. Electronic address:
The synthesis of multi-wavelength emission fluorescent metal-organic framework sensors has received widespread attention in recent years. Under solvothermal conditions, a series of triple-emission fluorescent sensors were fabricated by in situ encapsulation of red emitting Eosin Y and green emitting 9,10-bis(phenylethynyl)anthracene (BPEA) into a blue emitting naphthalene-based Zr-MOF. By combining the dye quantity regulation and the resonance energy transfer between MOFs and dyes, the single-phase EY&BPEA@Zr-MOFs exhibited tunable triple-emission fluorescence.
View Article and Find Full Text PDFHolographically designed aperiodic lattices (ALs) have proven to be an exciting engineering technique for achieving electrically switchable single- or multi-frequency emissions in terahertz (THz) semiconductor lasers. Here, we employ the nonlinear transfer matrix modeling method to investigate multi-wavelength nonlinear (sum- or difference-) frequency generation within an integrated THz (idler) laser cavity that also supports optical (pump and signal) waves. The laser cavity includes an aperiodic lattice, which engineers the idler photon lifetimes and effective refractive indices.
View Article and Find Full Text PDFMikrochim Acta
December 2024
Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, 100142, China.
Multi-wavelength emission fluorescent manganese-nitrogen co-doped carbon dots (Mn, N co-doped CDs) were synthesized by solvothermal method using β-cyclodextrin, O-phenylenediamine, and manganese chloride as raw materials. The prepared Mn, N co-doped CDs were used as fluorescent nanosensing platforms for the detection of metal ions and biomolecules and were found to be capable of fluorescence detection of tannic acid (TA) and hafnium (Hf) ion at 320, 380, and 480 nm excitation wavelengths with multi-response linear ranges of 0.7 ~ 1.
View Article and Find Full Text PDFLangmuir
December 2024
College of Chemistry and Materials, Taiyuan Normal University, Jinzhong 030619, China.
Plasmonic regulation introduced by metallic nanoparticles is a useful method to improve the detection performance of plasmon-based systems. Herein, we observed a unique enhancement of surface plasmon-coupled emission (SPCE) using plate-shaped plasmonic nanostructures. By assembling Au nanoplates (Au NPLs) via electrostatic adsorption between the Au nanofilm and the quantum dot (QD) layer (630 nm), the fluorescence signal of SPCE was enhanced 90 times more than that of normal SPCE after the conditions were optimized.
View Article and Find Full Text PDFIn this paper, we propose and experimentally demonstrate a novel compact multi-port multi-wavelength laser source (MP-MWL) for the optical I/O technology. The multi-wavelength DFB laser array is used for realizing the simultaneous emission of multiple wavelengths. The reconstruction equivalent chirp technique is used to design and fabricate the π-phase shifted DFB laser array to achieve precise wavelength spacing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!