In recent research, the expansion in the use of Mg alloys for biomedical applications has been approached by modifying their surfaces in conjunction with micro-arc oxidation (MAO) techniques which enhance their abrasion and corrosion resistance. In this study, combining laser texturing and MAO techniques to produce the dense ceramic coatings with microstructures. On the surface of the AZ31 Mg alloy, a micro-raised annulus array texture has been designed in order to increase the surface friction under liquid lubrication and to improve the operator's grip when holding the tool. For this work, the micro-morphology of the coatings was characterised, and the friction properties of the commonly used scalpel shank material 316 L, the untextured surface and the textured surface were comparatively analysed against disposable surgical gloves. The results show that the Laser-MAO ceramic coating grows homogenous, the porosity decreases from 14.3% to 7.8%, and the morphology after friction indicates that the coating has good wear resistance. More specifically, the average coefficient of friction (COF) of the three types of gloves coated with Laser-MAO ceramic was higher than that of the 316 L and MAO ceramic coatings under the action of the annulus-integrated texture under the lubrication conditions of physiological saline and defatted sheep blood, which achieved the goal of increasing friction for the purpose of helping to prevent the problem of tool slippage from the hand.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11094308 | PMC |
http://dx.doi.org/10.3389/fbioe.2024.1397050 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China.
Rib fracture-related infection is a challenging complication of thoracic trauma due to the difficulty of treating it with antibiotics alone and the need for a second operation to remove the infected fixator and sterilize the surrounding infected tissue. In this study, inspired by the photocatalytic performance of and ion release from silver-based materials, including AgPO and AgS, a hybrid AgPO-AgS heterojunction was prepared based on anion exchange and a one-step calcination process to design a nonantibiotic coating aimed at preventing and treating rib fracture-related infection with short-term 808 nm near-infrared irradiation. Calcination at 250 °C enhanced the inductive effect of the phosphate radical and led to the formation of a tight nanoheterogeneous interface between AgPO and AgS, thereby promoting interfacial electron transfer and reducing the recombination of photogenerated carriers.
View Article and Find Full Text PDFJ Dent Res
January 2025
Center for MicroElectroMechanical Systems, Universidade do Minho, Guimarães, Portugal.
In the present in vitro study, we evaluated the adhesion of an injectable platelet-rich fibrin (i-PRF) to laser-textured zirconia surfaces and their resultant friction behavior against bone tissue. Three types of zirconia surfaces were compared regarding the i-PRF coating effects: 1) grit blasted with 250-μm spherical alumina particles and acid etched with 20% hydrofluoric acid (ZLA), 2) laser textured with a random (RD) surface pattern, or 3) laser textured with a designed pattern based on 16 lines and 8 passages (L16N8). The coefficient of friction (COF) of the specimens was assessed on a reciprocating sliding pin-on-plate tribometer at 1-N normal load, 1 Hz, and a 2-mm stroke length.
View Article and Find Full Text PDFNanomicro Lett
January 2025
Energy and Environmental Division, Korea Institute of Ceramic Engineering and Technology, Jinju, Gyeongnam, 52851, Republic of Korea.
All-solid-state batteries (ASSBs) are pursued due to their potential for better safety and high energy density. However, the energy density of the cathode for ASSBs does not seem to be satisfactory due to the low utilization of active materials (AMs) at high loading. With small amount of solid electrolyte (SE) powder in the cathode, poor electrochemical performance is often observed due to contact loss and non-homogeneous distribution of AMs and SEs, leading to high tortuosity and limitation of lithium and electron transport pathways.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Physics, BITS Pilani-Pilani Campus RJ-333031 India
The study reports solid-state ceramic supercapacitors (SSCs) assembled using a novel composite electrolyte based on Li ion conducting perovskite-type LLTO (LiLaTiO) and an ionic liquid (EMIM BF). Small amounts of various ionic liquids (ILs) were added to LLTO to enhance the ionic conductivity and improve electrode compatibility. The optimal composition with approximately ∼6 wt% EMIM BF in LLTO exhibited a high ionic conductivity of around ∼10 Ω cm at room temperature, nearly three orders of magnitude higher than that of the pristine LLTO.
View Article and Find Full Text PDFF1000Res
January 2025
Department of Orthopaedics, Leiden University Medical Center, Leiden, Albinusdreef 2, 2333 ZA, The Netherlands.
Background: Prosthetic joint infection is a serious complication that can arise after total joint replacement surgery. When bacteria colonise an orthopaedic implant, they form biofilms that protect them from their environment, making them difficult to remove. Treatment is further complicated by a global rise of antimicrobial resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!