A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Molecular Mechanism of FABP4 Inhibition Effects of GAS and 4-HBA in Blume Was Discussed Based on NMR and Molecular Docking. | LitMetric

To isolate gastrodin (GAS), 4-hydroxybenzyl alcohol (4-HBA), and phenolic compounds from Chinese medicine Blume, and to explore the binding mode of fatty acid binding protein 4 (FABP4/aP2) that is closely related to macrophage inflammation, we study their anti-inflammatory targets. After the ultrasonic extraction of the main active components with 70% ethanol, three resins and three eluents were selected, and eight phenolic monomers with similar structures, such as gastrodin and 4-hydroxybenzyl alcohol, were isolated from by AB-8 macroporous resin and silica gel column chromatography and eluted with the CHCl-MeOH gradient. Their structures were identified by HPLC and nuclear magnetic resonance (NMR). The FABP4 protein was added to GAS and 4-HBA, and the NMR experiment was performed to observe ligand binding. Finally, according to the spectral information of STD-NMR and molecular docking technology, the interaction between ligands and protein was studied. The fluorescence competition experiment confirmed that both GAS and 4-HBA were in the binding cavity of FABP4. Moreover, 3-phenoxy-2-phenylbenzoic acid (PPA) is a possible inhibitor of FABP4, reducing macrophage-related inflammation and endoplasmic reticulum stress. This work provides a new basis for the anti-inflammatory mechanism of , paving the way for the research and development of FABP4 inhibitor drugs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11095988PMC
http://dx.doi.org/10.1155/2024/6599029DOI Listing

Publication Analysis

Top Keywords

gas 4-hba
12
molecular docking
8
4-hydroxybenzyl alcohol
8
fabp4
5
molecular mechanism
4
mechanism fabp4
4
fabp4 inhibition
4
inhibition effects
4
gas
4
effects gas
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!