AHNAK2 Promotes the Progression of Pancreatic Ductal Adenocarcinoma by Maintaining the Stability of c-MET.

Cancer Manag Res

Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China.

Published: May 2024

Purpose: Pancreatic ductal adenocarcinoma (PDAC) is extremely malignant and rapidly progresses. The overall response rate of PDAC to current treatment methods is still unsatisfactory. Thus, identifying novel targets and clarifying the underlying mechanisms associated with PDAC progression may potentially offer additional treatment strategies. AHNAK2 is aberrantly expressed in a variety of tumors and exerts pro-tumorigenic effects. However, the biological role of AHNAK2 in PDAC remains poorly understood.

Methods: The expression of AHNAK2 in PDAC and paired non-tumor tissues was detected by immunohistochemistry (IHC) and quantitative real-time polymerase chain reaction (qRT-PCR). Lentivirus knockdown was performed to investigate the impact of AHNAK2 on the biological function of pancreatic cancer cells. The subcutaneous cell-derived xenograft (CDX) model and the KPC spontaneous mouse model with AHNAK2 silencing were used to observe the effects of AHNAK2 on tumor growth and prognosis. The expression of c-MET at protein level in response to HGF treatment was assessed using western blot.

Results: Our results demonstrated that AHNAK2 was highly expressed in PDAC clinical samples and associated with poor prognosis. Knockdown of AHNAK2 significantly inhibited the proliferation, migration, and invasion of pancreatic cancer cells. AHNAK2 knockdown or knockout resulted in tumor growth suppression and prolonged survival in mice with PDAC. In addition, AHNAK2 and c-MET expression levels showed a significant positive correlation at the post-transcriptional level. Mechanistically, AHNAK2 promoted tumor progression by preventing c-MET degradation and persistently activating the HGF/c-MET signaling pathway.

Conclusion: Overall, our study revealed that AHNAK2 plays an important role in PDAC progression by modulating the c-MET signaling pathway, and targeting AHNAK2 may be an effective therapeutic strategy for PDAC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11095252PMC
http://dx.doi.org/10.2147/CMAR.S451486DOI Listing

Publication Analysis

Top Keywords

ahnak2
14
pdac
9
pancreatic ductal
8
ductal adenocarcinoma
8
pdac progression
8
ahnak2 pdac
8
pancreatic cancer
8
cancer cells
8
tumor growth
8
c-met
5

Similar Publications

AHNAK2: a potential diagnostic biomarker for pancreatic cancer related to cellular motility.

Sci Rep

January 2025

Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.

Pancreatic ductal adenocarcinoma lacks suitable biomarkers for early diagnosis of disease. In gene panels developed for early diagnosis of pancreatic cancer, high AHNAK2 mRNA expression was one possible biomarker. In silico analysis of published human sample datasets (n = 177) and ex vivo analysis of human plasma samples (n = 30 PDAC with matched 30 healthy control) suggested AHNAK2 could be a diagnostic biomarker.

View Article and Find Full Text PDF

A significantly diverse clinical presentation of amyotrophic lateral sclerosis (ALS), even in its best-studied familial form, continues to hinder current efforts to develop effective disease-modifying drugs for the cure of this rapidly progressive, fatal neuromuscular disease. We have previously shown that clinical heterogeneity of sporadic ALS (sALS) could be explained, at least in part, by its polygenic nature as well as by the presence of mutated genes linked to non-ALS neurological diseases and genes known to mediate ALS-related pathologies. We hypothesized that a similar genetic framework could also be present in patients with familial ALS (fALS).

View Article and Find Full Text PDF

Comprehensive Genetic Profile of Chinese Muscle-Invasive Bladder Cancer Cohort.

Clin Genitourin Cancer

December 2024

Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. Electronic address:

Objective: The aim of our study was to characterize the spectrum of mutations in muscle-invasive bladder cancer (MIBC) in the Chinese population, identifying mutational features and exploring potential therapeutic targets.

Methods: We collected samples from 62 Chinese patients with MIBC. For each patient, tumor tissues or blood samples were collected and sequenced by whole exome sequencing.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the genetic heterogeneity and molecular profiles of bile tract cancer (BTC) using whole-genome sequencing to identify actionable gene mutations involved in its progression and treatment resistance.
  • The analysis of six BTC samples revealed a high average of somatic mutations with a significant prevalence of single nucleotide variants (SNVs), but no matching mutations were found in the existing cancer database.
  • Key findings suggest that samples without vascular invasion had a higher mutation prevalence, highlighting specific genes like ADAMTS7, AHNAK2, and CAPN10 that show differences in mutation rates between groups, emphasizing the complexity and genetic diversity of BTC.
View Article and Find Full Text PDF

Undifferentiated pleomorphic sarcoma (UPS) is a highly malignant mesenchymal tumor that ranks as one of the most common types of soft tissue sarcoma. Even though chemotherapy increases the 5-year survival rate in UPS, high tumor heterogeneity frequently leads to chemotherapy resistance and consequently to recurrences. In this study, we characterized the cell composition and the transcriptional profile of UPS with resistance to chemotherapy at the single cell resolution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!