It is of utmost importance to understand the characteristics and regulatory mechanisms of soil in order to optimize soil management and enhance crop yield. Poly-γ-glutamic acid (γ-PGA), a stress-resistant amino acid polymer, plays a crucial role in plant drought stress resistance. However, little is known about the effects of γ-PGA on soil characteristics during drought treatments. In this study, the effects of different forms of γ-PGA on soil texture and basic physical and chemical properties under short-term drought conditions were investigated. Furthermore, the impact of γ-PGA on the microbial community and metabolic function of maize was analyzed. Under drought conditions, the introduction of γ-PGA into the soil resulted in notable improvements in the mechanical composition ratio and infiltration capacity of the soil. Concurrently, this led to a reduction in soil bulk density and improved soil organic matter content and fertility. Additionally, metagenomic analysis revealed that under drought conditions, the incorporation of γ-PGA into the soil enhanced the soil microbiota structure. This shift led to the predominance of bacteria that are crucial for carbon, nitrogen, and phosphorus cycles in the soil. Metabolomics analysis revealed that under drought treatment, γ-PGA affected soil metabolic patterns, with a particular focus on alterations in amino acid and vitamin metabolism pathways. Correlation analysis between the soil metagenome and metabolites showed that microorganisms played a significant role in metabolite accumulation. These results demonstrated that γ-PGA could improve soil characteristics under drought conditions and play an important role in soil microorganisms and microbial metabolism, providing further insights into the changes in soil characteristics under drought conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11094619 | PMC |
http://dx.doi.org/10.3389/fmicb.2024.1387223 | DOI Listing |
Vaccines (Basel)
December 2024
State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China.
Porcine reproductive and respiratory syndrome (PRRS), characterized by reproductive failures in breeding pigs and respiratory diseases in growing pigs, is a widespread and challenging disease. The agent, PRRSV, is a single-strand RNA virus that is undergoing continuous mutation and evolution, resulting in the global spread of multiple strains with different genetic characteristics and variable antigens. There are currently no effective measures to eradicate PRRS, and vaccination is crucial for controlling the disease.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan.
Understanding the factors that contribute to slope failures, such as soil saturation, is essential for mitigating rainfall-induced landslides. Cost-effective capacitive soil moisture sensors have the potential to be widely implemented across multiple sites for landslide early warning systems. However, these sensors need to be calibrated for specific applications to ensure high accuracy in readings.
View Article and Find Full Text PDFSensors (Basel)
December 2024
PROEPLA, Higher Polytechnic School of Engineering, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
Weather and soil water dictate farm operations such as irrigation scheduling. Low-cost and open-source agricultural monitoring stations are an emerging alternative to commercially available monitoring stations because they are often built from components using open-source, do-it-yourself (DIY) platforms and technologies. For irrigation management in an experimental vineyard located in Quiroga (Lugo, Spain), we faced the challenge of installing a low-cost environmental and soil parameter monitoring station composed of several nodes measuring air temperature and relative humidity, soil temperature, soil matric potential, and soil water content.
View Article and Find Full Text PDFSensors (Basel)
December 2024
CommSensLab-UPC, Universitat Politècnica de Catalunya-BarcelonaTech, 08034 Barcelona, Spain.
Interferometric radiometers operating at L-band, such as ESA's SMOS mission, enable crucial Earth observations providing high-resolution measurements of soil moisture, ocean salinity, and other geophysical parameters. However, the increasing electromagnetic spectrum utilization has led to significant Radio Frequency Interference (RFI) challenges, particularly critical given the sensors' fine temperature resolution requirements of less than 1 K. This work presents the hardware implementation of an advanced RFI detection and mitigation algorithm specifically designed for interferometric radiometers, targeting future L-band missions.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
School of Civil Engineering, Architectural and Environment, Hubei University of Technology, Wuhan 430068, China.
Expanded polystyrene (EPS) bead-lightweight soil composites are a new type of artificial geotechnical material with low density and high strength. We applied EPS bead-lightweight soil in this project, replacing partial cement with fly ash to reduce construction costs. EPS beads were used as a lightweight material and cement and fly ash as curing agents in the raw soil were used to make EPS lightweight soil mixed with fly ash.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!