Breast cancer (BC) is the most common neoplasm in women worldwide and one of the leading causes of female death. The triple-negative subtype, characterized by the absence of hormone receptor (HR) and human epidermal growth factor receptor 2 (HER2), tends to occur in younger patients, be more aggressive and less differentiated. Furthermore, this subtype is considered the most immunogenic and associated with higher levels of tumor cell infiltration, mainly lymphocytes. Tumor-infiltrating lymphocytes (TILs) play a crucial role in the interaction of the host's immune system and cancer cells. The microenvironment is critical in tumor development and progression. Assessment of infiltrating lymphocytes can provide valuable information about the immune response and, given the lack of biomarkers to guide treatment decisions and predict outcomes in triple-negative tumors and can be considered as a potential biomarker. Some evidence suggests that higher levels of these lymphocytes are associated with better responses to systemic treatment, longer progression-free survival and overall survival (OS). However, treatment escalation or de-escalation strategies for triple-negative BC (TNBC) currently do not consider the presence or density of TILs for therapeutic decisions. TILs appear to be useful predictive and prognostic indicators. Further clinical studies are needed to confirm these relationships and integrate TILs as a biomarker consistently into clinical practice. This article summarizes key concepts relating to the role of the immune infiltrate in BC, along with the current status and future prospects regarding TILs as a predictive and prognostic biomarker.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11093080 | PMC |
http://dx.doi.org/10.21037/tbcr-23-43 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!