Cost-optimization models are powerful tools for evaluating emerging water treatment processes. However, to date, optimization models do not incorporate detailed chemical reaction phenomena, limiting the assessment of pretreatment and mineral scaling. Moreover, novel approaches for high-salinity and high-recovery desalination are typically proposed without direct quantification of pretreatment needs or mineral scaling. This work addresses a critical gap in the literature by presenting a modeling framework that includes complex water chemistry predictions with process-scale optimization. We use this approach to conduct a technoeconomic assessment on a conceptual high-recovery treatment train that includes chemical pretreatment (i.e., soda ash softening and recarbonation) and membrane-based desalination (i.e., standard and high-pressure reverse osmosis). We demonstrate how to develop and integrate accurate multidimensional surrogate models for predicting precipitation, pH, and mineral scaling tendencies. Our findings show that cost-optimal results balance the costs of pretreatment with reverse osmosis system design. Optimizing across a range of water recoveries (i.e., 50-90%) reveals multiple cost-optimal schemas that vary the chemical dosing in pretreatment and the design and operation of reverse osmosis. Our results reveal that pretreatment costs can be more than double the cost of the primary desalination process at high recoveries due to the extensive pretreatment required to control scaling. This work emphasizes the importance of and provides a framework for including chemistry and mineral scaling predictions in the evaluation of emerging technologies in high-recovery desalination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11091887 | PMC |
http://dx.doi.org/10.1021/acsestengg.3c00537 | DOI Listing |
Sao Paulo Med J
January 2025
Associate Professor, Department of Nephrology, Ankara Bilkent City Hospital, Ankara, Turkey.
Background: Insulin resistance often occurs in patients with chronic kidney disease (CKD) owing to mineral and bone metabolism disorders. Fibroblast growth factor (FGF)-23 and soluble klotho (s-KL) play crucial roles in linking CKD with mineral and bone metabolism.
Objective: This study aimed to examine the relationship between insulin resistance and FGF-23 and s-KL in patients with non-diabetic pre-dialysis patients with CKD.
Environ Sci Technol
January 2025
Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, Kanagawa 236-0001, Japan.
Ice-nucleating particles (INPs) significantly influence aerosol-cloud precipitation interactions at regional and global scales. However, information regarding the concentrations and origins of INPs over the open ocean, particularly at high latitudes, remains insufficient due to access difficulties. In this study, we investigated the concentrations and origins of INPs over the western North Pacific to the Arctic Ocean through ship-borne observations conducted in the early autumn of 2016.
View Article and Find Full Text PDFEnergy Fuels
January 2025
Geothermal Energy and Geofluids Group, Institute of Geophysics, Department of Earth and Planetary Sciences, ETH Zurich, Zurich 8092, Switzerland.
Carbon capture and storage (CCS) and CO-based geothermal energy are promising technologies for reducing CO emissions and mitigating climate change. Safe implementation of these technologies requires an understanding of how CO interacts with fluids and rocks at depth, particularly under elevated pressure and temperature. While CO-bearing aqueous solutions in geological reservoirs have been extensively studied, the chemical behavior of water-bearing supercritical CO remains largely overlooked by academics and practitioners alike.
View Article and Find Full Text PDFHeliyon
January 2025
Nuclear Chemistry Division, Department of Chemistry, Atomic Energy Commission, P. O. Box: 9061, Damascus, Syrian Arab Republic.
Molecular scale information is needed to understand ions coordination to mineral surfaces and consequently to accelerate the design of improved adsorbents. The present work reports on the use of two-dimensional correlation Fourier Transform infra-red spectroscopy (2D-COS-FTIR) and hetero 2D-COS-FTIR- X-ray diffraction (XRD) to probe the mechanism of Cr(VI) removal from aqueous solutions by activated carbon (AC) and its composite with PWO (AC-composite). The adsorption data at an initial Cr(VI) concentration of 320 mg L (320 ppm) revealed maximum adsorption capacities of 65 mg g for AC and 73 mg g for AC-composite, corresponding to removal percentages of 83 % and 94 %, respectively.
View Article and Find Full Text PDFNephrol Dial Transplant
January 2025
Department of Microbiology, Immunology and Transplantation; Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium.
Vitamin D deficiency is common in patients with chronic kidney disease (CKD) and associates with poor outcomes. Current clinical practice guidelines recommend supplementation with nutritional vitamin D as for the general population. However, recent large-scale, clinical trials in the general population failed to demonstrate a benefit of vitamin D supplementation on skeletal or non-skeletal outcomes, fueling a debate on the rationale for screening for and correcting vitamin D deficiency, both in non-CKD and CKD populations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!