Hydroxytyrosol Linoleoyl Ether Ameliorates Metabolic-Associated Fatty Liver Disease Symptoms in Obese Zucker Rats.

ACS Pharmacol Transl Sci

Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Universitario Regional de Málaga, UGC Salud Mental, Av. Carlos Haya 82, Málaga 29010, Spain.

Published: May 2024

A main hepatic consequence of obesity is metabolic-associated fatty liver disease (MAFLD), currently treated by improving eating habits and administrating fibrates yet often yielding suboptimal outcomes. Searching for a new therapeutic approach, we aimed to evaluate the efficacy of hydroxytyrosol linoleoyl ether (HTLE), a dual Ppar-α agonist/Cb1 antagonist with inherent antioxidant properties, as an antisteatotic agent. Using lean and obese Zucker rats, they were administrated daily doses of HTLE (3 mg/kg) over a 15-day period, evaluating its safety profile, pharmacokinetics, impact on body weight, hepatic fat content, expression of key enzymes involved in lipogenesis/fatty acid oxidation, and antioxidant capacity. HTLE decreased the body weight and food intake in both rat genotypes. Biochemical analysis demonstrated a favorable safety profile for HTLE along with decreased concentrations of urea, total cholesterol, and aspartate aminotransferase AST transaminases in plasma. Notably, HTLE exhibited potent antisteatotic effects in obese rats, evidenced by a decrease in liver fat content and downregulation of lipogenesis-related enzymes, alongside increased expression of proteins controlling lipid oxidation. Moreover, HTLE successfully counteracted the redox imbalance associated with MAFLD in obese rats, attenuating lipid peroxidation and replenishing both glutathione levels and the overall antioxidant. Our findings highlight the effectiveness of triple-action strategies in managing MAFLD effectively. Based on our results in the Zucker rat model, HTLE emerges as a promising candidate with triple functionality as an anorexigenic, antisteatotic, and antioxidant agent, offering potential relief from MAFLD symptoms associated with obesity while exhibiting minimal side effects. In conclusion, our study positions HTLE as a highly promising compound for therapeutic intervention in MAFLD treatment, warranting further exploration in clinical trials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11092116PMC
http://dx.doi.org/10.1021/acsptsci.4c00105DOI Listing

Publication Analysis

Top Keywords

hydroxytyrosol linoleoyl
8
linoleoyl ether
8
metabolic-associated fatty
8
fatty liver
8
liver disease
8
obese zucker
8
zucker rats
8
htle
8
safety profile
8
body weight
8

Similar Publications

Hydroxytyrosol Linoleoyl Ether Ameliorates Metabolic-Associated Fatty Liver Disease Symptoms in Obese Zucker Rats.

ACS Pharmacol Transl Sci

May 2024

Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Universitario Regional de Málaga, UGC Salud Mental, Av. Carlos Haya 82, Málaga 29010, Spain.

A main hepatic consequence of obesity is metabolic-associated fatty liver disease (MAFLD), currently treated by improving eating habits and administrating fibrates yet often yielding suboptimal outcomes. Searching for a new therapeutic approach, we aimed to evaluate the efficacy of hydroxytyrosol linoleoyl ether (HTLE), a dual Ppar-α agonist/Cb1 antagonist with inherent antioxidant properties, as an antisteatotic agent. Using lean and obese Zucker rats, they were administrated daily doses of HTLE (3 mg/kg) over a 15-day period, evaluating its safety profile, pharmacokinetics, impact on body weight, hepatic fat content, expression of key enzymes involved in lipogenesis/fatty acid oxidation, and antioxidant capacity.

View Article and Find Full Text PDF

Background: Eicosapentaenoic acid (EPA, C20:5n-3), docosahexaenoic acid (DHA, C22:6n-3) and arachidonic acid (AA, C20:4n-6) are long-chain polyunsaturated fatty acids (LCPUFAs) with relevant roles in the organism. EPA and DHA are synthesized from the precursor alpha-linolenic acid (ALA, C18:3n-3), whereas AA is produced from linoleic acid (LA, C18:2n-6) through the action of Δ5 and Δ6-desaturases. High-fat diet (HFD) decreases the activity of both desaturases and LCPUFA accretion in liver and other tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!