Polyriboinosinic acid-polyribocytidylic acid (Poly I:C) serves as a synthetic mimic of viral double-stranded dsRNA, capable of inducing apoptosis in numerous cancer cells. Despite its potential, therapeutic benefits, the application of Poly I:C has been hindered by concerns regarding toxicity, stability, enzymatic degradation, and undue immune stimulation, leading to autoimmune disorders. To address these challenges, encapsulation of antitumor drugs within delivery systems such as cationic liposomes is often employed to enhance their efficacy while minimizing dosages. In this study, we investigated the potential of cationic liposomes to deliver Poly I:C into the Head and Neck 12 (HN12) cell line to induce apoptosis in the carcinoma cells and tumor model. Cationic liposomes made by the hydrodynamic focusing method surpass traditional methods by offering a continuous flow-based approach for encapsulating genes, which is ideal for efficient tumor delivery. DOTAP liposomes efficiently bind Poly I:C, confirmed by transmission electron microscopy images displaying their spherical morphology. Liposomes are easily endocytosed in HN12 cells, suggesting their potential for therapeutic gene and drug delivery in head and neck squamous carcinoma cells. Activation of apoptotic pathways involving MDA5, RIG-I, and TLR3 is evidenced by upregulated caspase-3, caspase-8, and IRF3 genes upon endocytosis of Poly(I:C)-encapsulated liposomes. Therapeutic evaluations revealed significant inhibition of tumor growth with Poly I:C liposomes, indicating the possibility of MDA5, RIG-I, and TLR3-induced apoptosis pathways via Poly I:C liposomes in HN12 xenografts in J:NU mouse models. Comparative histological analysis underscores enhanced cell death with Poly I:C liposomes, warranting further investigation into the precise mechanisms of apoptosis and inflammatory cytokine response in murine models for future research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11092114 | PMC |
http://dx.doi.org/10.1021/acsptsci.4c00121 | DOI Listing |
Heliyon
January 2025
Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, PR China.
Background: In several studies of head and neck squamous cell carcinoma (HNSC), the regulation of tumorigenesis and therapeutic sensitivity by pyroptosis has been observed. However, a systematic analysis of gasdermin family members (GSDMs, including GSDMA/B/C/D/E and PJVK), which are deterministic executors of pyroptosis, has not yet been reported in HNSC.
Methods: We performed comprehensive analyses of the expression profile, prognostic value, regulatory network, and immune infiltration modulation of GSDMs in HNSC on the basis of a computational approach and bioinformatic analysis of publicly available datasets.
J Bone Oncol
February 2025
Unit of Oral Medicine and Dentistry for Frail Patients, Department of Rehabilitation, Fragility, and Continuity of Care, Regional Center for Research and Care of MRONJ, University Hospital Palermo, Palermo, PA, Italy.
Background: Low-doses of bone modifying agents (LD-BMAs) compared to those used to treat bone metastases are used in breast or prostate cancer patients on adjuvant endocrine therapy to prevent Cancer Treatment Induced Bone Loss (CTIBL). Their use is associated with an increased risk of developing Medication-Related Osteonecrosis of the Jaw (MRONJ). However, there is not clarity about strategies aimed to minimize the MRONJ risk in cancer patients at different conditions as low- vs high-doses of BMA.
View Article and Find Full Text PDFBarbed reposition pharyngoplasty (BRP) is a new technique to manage velo-pharyngeal obstruction and collapse in OSA patients. Tonsillectomy is a preliminary step of BRP surgery. Dissection of the PPM with monopolar or hot instruments is an essential step of the BRP technique.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
Inducing the degradation of KRAS represents a novel strategy to combat cancers with KRAS mutation. In this study, we identify ubiquitin-specific protease 2 (USP2) as a novel deubiquitinating enzyme of KRAS in multiple myeloma (MM). Specifically, we demonstrate that gambogic acid (GA) forms a covalent bond with the cysteine 284 residue of USP2 through an allosteric pocket, inhibiting its deubiquitinating activity.
View Article and Find Full Text PDFInt J Exerc Sci
December 2024
School of Allied Health Professions, Loma Linda University, Loma Linda, CA, USA.
Neck pain is a widespread problem in society with many variables influencing its cause. The angle of the hip may influence the kinematics of the neck in addition to the myoelectrical activation of the surrounding musculature that contributes to the development of neck pain. The purpose of this study was to investigate the changes in spinal inclination angles and muscle activity in the neck using a 10 deg wedge in a forward slope, neutral and rear slope seated position.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!