The U. S. Environmental Protection Agency in collaboration with the U. S. Air Force Arnold Engineering Development Complex conducted the VAriable Response In Aircraft nvPM Testing (VARIAnT) 3 and 4 test campaigns to compare nonvolatile particulate matter (nvPM) emissions measurements from a variety of diffusion flame combustion aerosol sources (DFCASs), including a Cummins diesel engine, a diesel powered generator, two gas turbine start carts, a J85-GE-5 turbojet engine burning multiple fuels, and a Mini-CAST soot generator. The VARIAnT research program was devised to understand reported variability in the ARP6320A sampling system nvPM measurements. The VARIAnT research program has conducted four test campaigns to date with the VARIAnT 3 and 4 campaigns devoted to: (1) assessing the response of three different black carbon mass analyzers to particles of different size, morphology, and chemical composition; (2) characterizing the particles generated by 6 different combustion sources according to morphology, effective density, and chemical composition; and (3) assessing any significant difference between black carbon as determined by the 3 mass analyzers and the total PM determined via other techniques. Results from VARIAnT 3 and 4 campaigns revealed agreement of about 20% between the Micro-Soot Sensor, the Cavity Attenuated Phase Shift (CAPS PM) monitor and the thermal-optical reference method for elemental carbon (EC) mass, independent of the calibration source used. For the LII-300, the measured mass concentrations in VARIAnT 3 fall within 18% and in VARIAnT 4 fall within 27% of the reference EC mass concentration when calibrated on a combustor rig in VARIAnT 3 and on an LGT-60 start cart in VARIAnT 4, respectively. It was also found that the three mass instrument types (MSS, CAPS PM, and LII-300) can exhibit different BC to reference EC ratios depending on the emission source that appear to correlate to particle geometric mean mobility diameter, morphology, or some other parameter associated with particle geometric mean diameter (GMD) with the LII-300 showing a slightly stronger apparent trend with GMD. Systematic differences in LII-300 measured mass concentrations have been reduced by calibrating with a turbine combustion as a particle source (combustor or turbine engine). With respect to the particle size measurements, the sizing instruments (TSI SMPS, TSI EEPS, and Cambustion DMS 500) were found to be in general agreement in terms of size distributions and concentrations with some exceptions. Gravimetric measurements of the total aerosol mass produced by the various DFCAs differed from the reference EC, BC and integrated particle size distribution measured aerosol masses. The measurements of particle size distributions and single particle analysis performed using the miniSPLAT indicated the presence of larger particles (≳150 nm) having more compact morphologies, higher effective density, and a composition dominated by OC and containing ash. This increased large particle fraction is also associated with higher values of single scattering albedo measured by the CAPS PM instrument and higher OC measurements. These measurements indicate gas turbine engine emissions can be a more heterogeneous mix of particle types beyond the original E-31 assumption that engine exit exhaust particles are mainly composed of black carbon.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11095129 | PMC |
http://dx.doi.org/10.1016/j.jaerosci.2024.106352 | DOI Listing |
Environ Sci Technol
January 2025
U.S. Environmental Protection Agency, E205-02, Research Triangle Park, P.O. Box 12055, Durham, North Carolina 27711, United States.
The complex, varied composition (i.e., rubbers/elastomers, carbon black, fillers, additives, and embedded road materials) and wide density range of tire road wear particles (TRWPs) present challenges for their isolation and identification from environmental matrices.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Rollins School of Public Health, Emory U, Atlanta, Ga 30322, United States.
Repeated measurements of household air pollution may provide better estimates of average exposure but can add to costs and participant burden. In a randomized trial of gas versus biomass cookstoves in four countries, we took supplemental personal 24-h measurements on a 10% subsample for mothers and infants, interspersed between protocol samples. Mothers had up to five postrandomization protocol measurements over 16 months, while infants had three measurements over one year.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California 94609, United States.
Exposure to household air pollution has been linked to adverse health outcomes among women aged 40-79. Little is known about how shifting from biomass cooking to a cleaner fuel like liquefied petroleum gas (LPG) could impact exposures for this population. We report 24-h exposures to particulate matter (PM), black carbon (BC), and carbon monoxide (CO) among women aged 40 to <80 years participating in the Household Air Pollution Intervention Network trial.
View Article and Find Full Text PDFiScience
January 2025
Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India.
This article evaluated different production strategies, characteristics, and applications of biochar for ameliorating soil fertility and microbial diversity. The biochar production techniques are evolving, indicating that newer methods (including hydrothermal and retort carbonization) operate with minimum temperatures, yet resulting in high yields with significant improvements in different properties, including heating value, oxygen functionality, and carbon content, compared to the traditional methods. It has been found that the temperature, feedstock type, and moisture content play critical roles in the fabrication process.
View Article and Find Full Text PDFiScience
January 2025
School of Geographical Sciences, University of Bristol, Bristol, UK.
Novel sustainable agricultural strategies that enhance soil nutrients and human nutrition are crucial for meeting global food production needs. Here, we evaluate the potential of "glacial flour," a naturally crushed rock produced by glaciers known to be rich in nutrients (P, K, and micronutrients) needed for plant growth. Our proof-of-concept study, investigated soybean ( var.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!